12

Embedded Multi-Core Processing for
Networking

Theofanis Orphanoudakis

University of Peloponnese
Tripoli, Greece
fanis@uop.gr

Stylianos Perissakis

Intracom Telecom
Athens, Greece
sper@intracom.gr

CONTENTS
12.1 Introduction 400
12.2 Overview of Proposed NPU Architectures 403

12.3

12.4

12.5

12.2.1 Multi-Core Embedded Systems for Multi-Service
Broadband Access and Multimedia Home Networks . 403

12.2.2 SoC Integration of Network Components and Examples

of Commercial Access NPUs 405
12.2.3 NPU Architectures for Core Network Nodes and
High-Speed Networking and Switching 407
Programmable Packet Processing Engines 412
12.3.1 Parallelism 413
12.3.2 Multi-Threading Support 418
12.3.3 Specialized Instruction Set Architectures 421
Address Lookup and Packet Classification Engines 422
12.4.1 Classification Techniques 424
12.4.1.1 Trie-based Algorithms 425
12.4.1.2 Hierarchical Intelligent Cuttings (HiCuts) . 425
12.4.2 Case Studies 426
Packet Buffering and Queue Management Engines 431

400 Multi-Core Embedded Systems

12.5.1 Performance Issues 433
12.5.1.1 External DRAM Memory Bottlenecks . . . 433
12.5.1.2 Evaluation of Queue Management Functions:

INTEL IXP1200 Case 434

12.5.2 Design of Specialized Core for Implementation of Queue
Management in Hardware 435
12.5.2.1 Optimization Techniques 439
12.5.2.2 Performance Evaluation of Hardware Queue

Management Engine 440
12.6 Scheduling Engines 0oL 442

12.6.1 Data Structures in Scheduling Architectures 443

12.6.2 Task Scheduling 444
12.6.2.1 Load Balancing 445

12.6.3 Traffic Scheduling 450

12.7 Conclusions 453
Review Questions and Answers 455
Bibliography 459
|

12.1 Introduction

While advances in wire-line and wireless transmission systems have provided
ample bandwidth surpassing customer demand at least for the near future,
the bottleneck for high-speed networking and enhanced service provisioning
has moved to processing. Network system vendors try to push processing at
the network edges employing various techniques. Nevertheless, the network-
ing functionality is always proliferating as more and more intelligence (such
as multimedia content delivery, security applications and quality of service
(QoS)- aware networks) is demanded. The future Internet is expected to pro-
vide a data-centric networking platform providing services beyond today’s
expectations for shared workspaces, distributed data storage, cloud and grid-
computing, broadcasting and multi-party real-time media-rich communica-
tions and many types of e-services such as sophisticated machine-machine in-
teraction between robots, e-health, and interactive e-learning. Thus, the model
of routing/switching devices has been augmented to enable the introduction
of value added services involving complex network processing over multiple
protocol stacks and the raw data forwarding functionality has been left only
as the major task of large core switches that are exclusively assigned with
this task. To cope with this demand, system designers have leaned on micro-
electronic technology to embed network processing functions in either fixed
or programmable hardware as much as possible. This led to a new genera-

Embedded Multi-Core Processing for Networking 401

tion of multi-core embedded systems specifically designed to tackle network
processing application requirements.

In the past the power required for the processing of protocol functions at
wire speed was usually obtained either by generic microprocessors (also re-
ferred to as central processing units, CPUs) designed with the flexibility to
perform a variety of functions, but at a slower speed, or application specific
integrated circuits (ASICs) designed to meet a specific functional requirement
with high efficiency. Notwithstanding the requirement for high capacity and
high quality of the offered services, the development cost of such systems (af-
fected by the system component cost, application development cost, time-to-
market as well as time-in-market) remains a critical factor in the development
of such platforms. Hybrid programmable system-on-chip (SoC) devices inte-
grating either generalized or task-specific processing cores called in general
network processing units (NPUs) have recently deposed generic CPU-based
products from many networking applications, extending the scalability (i.e.,
time-in-market) and performance of these products, therefore reducing cost
and maximizing profits. In general NPUs can be defined as programmable em-
bedded multi-core semiconductor systems optimized for performing wire speed
operations on packet data units (PDUs). The development of such complex
devices with embedded CPUs and diverse IP blocks has introduced a new
paradigm in micro-electronics design as well in exploitation, programming
and application porting on such devices.

The requirements of applications built on NPU-based devices are expand-
ing dramatically. They must accommodate the highest bit rate on the one
hand while coping with protocol processing of increased complexity on the
other. In general the functionality of these protocols that spans the area of
network processing can be classified as shown in Figure 12.1.

Network Processing ————

Physical Switching
Layer
Frami Classificati Modificati E Traffic
ramin assification odification rotocol
9 Processing ||Management

FIGURE 12.1: Taxonomy of network processing functions.

Physical layer processing and traffic switching are mostly related to the
physical characteristics of the communications channel and the technology
of the switching element used to interconnect multiple network nodes. The
physical layer processing broadly includes all functions related to the conver-
sion from transport media signals to bits. These functions include reception
of electronic/photonic/RF signals and are generally classified in the different
sub-layers such as the physical medium dependent (PMD), physical medium
attachment (PMA) and physical coding sub-layer (PCS) resulting in appro-
priate signal reception, demodulation, amplification and noise compression,

402 Multi-Core Embedded Systems

clock recovery, phase alignment, bit/byte synchronization and line coding.
Switching includes the transport of PDUs from ingress to egress ports based
on classification/routing criteria. For low rate applications switching is usu-
ally implemented through shared memory architectures, whereas for high rate
applications through crossbar, bus, ring or broadcast and select architectures
(the latter especially applied in the case of optical fabrics). The most demand-
ing line-rates that motivated the wider introduction of NPUs in networking
systems range in the order of 2.5 to 40 Gbps (0OC-48, OC-192 and OC-768
data rates of the synchronous optical networking standard: SONET).

Framing and deframing includes the conversion from bits to PDUs, group-
ing bits into logical units. The protocols used are classified as Layer 2 protocols
(data link layer of the OSI reference architecture) and the logical units are
defined as frames, cells or packets. PDU conversion may also be required in
the form of segmentation and reassembly. Most usually some form of verifica-
tion of the PDU contents also needs to be applied to check for bit and field
errors requiring the generation/calculation of checksums. In the more general
case the same functionality is extended to all layers of the protocol stack since
all telecommunication protocols employ some packetization and encapsulation
techniques that require the implementation of programmable field extraction
and modification, error correction coding and segmentation and reassembly
(including buffering and memory management) schemes.

Classification includes the identification of the PDUs based on pattern
matching to perform field lookups or policy criteria, also called rules. Many
protocols require the differentiation of packets based on priorities, indicated
in bits, header fields or multi-field (layers 2 up to 7 information fields) con-
ditions. Based on the parsing (extraction of bits/fields) of the PDUs, pattern
matching in large databases (including information about addresses, ports,
flow tables etc.) is performed. Modification facilitates actions on PDUs based
on classification results. These functions perform marking/editing of PDU bits
to implement network address translation, ToS (type of service), CoS (class
of service) marking, encapsulation, recalculation of checksums etc.

Content /protocol processing (i.e., processing of the entire PDU payload)
may be required in case of compression (in order to reduce bandwidth load
through the elimination of data redundancy) and encryption (in order to pro-
tect the PDU through scrambling, using public/private keys etc.) as well as
deep packet inspection (DPI) for application aware filtering, content based
routing and other similar applications. Associated functions required in most
cases of protocol processing include the implementation of memory manage-
ment techniques for the maintenance of packet queues, management of timers
and implementation of finite state machines (FSMs).

Traffic engineering facilitates differentiated handling for flows of PDUs
characterized by the same ToS or CoS, in order to meet a contracted level
of QoS. This requires the implementation of multiple queues per port, loaded
based on classification results (overflow conditions requiring additional intel-

Embedded Multi-Core Processing for Networking 403

ligent policing and packet discard algorithms) and served based on specific
scheduling algorithms.

In the packet network world, the CPU traditionally assumes the role of
packet processor. Many protocols for data networks have been developed with
CPU-centered architectures in mind. As a result, there are protocols with vari-
able length headers, checksums in arbitrary locations and fields using arbitrary
alignments. Two major factors drive the need for NPUs: i) increasing network
bit rates, and ii) more sophisticated protocols for implementing multi-service
packet-switched networks. NPUs have to address the above communications
system performance issues coping with three major performance-related re-
sources in a typical data communication system:

1. Processing cores
2. System bus(es)

3. Memory

These requirements drive the need for multi-core embedded systems specif-
ically designed to alleviate the above bottlenecks by assigning hardware re-
sources to efficiently perform specific network processing tasks. NPUs mainly
aim to reduce CPU involvement in the above packet processing steps, which
represent more or less independent functional blocks and generally result in
the high-level specification of an NPU as a multi-core system.

12.2 Overview of Proposed NPU Architectures

12.2.1 Multi-Core Embedded Systems for Multi-Service
Broadband Access and Multimedia Home Networks

The low-cost, limited-performance, feature-rich range of multi-core NPUs can
be found in market applications that are motivated by the trend for multi-
service broadband access and multimedia home networks. The networking
devices that are designed to deliver such kind of applications to the end users
over a large mixture of networking technologies and a multitude of interfaces
face stringent requirements for size, power and cost reduction. These require-
ments can only be met by a higher degree of integration without sacrificing
though performance and the flexibility to develop new applications on the
same hardware platform over time. Broadband access networks use a variety
of access technologies, which offer sufficient network capacity to support high-
speed networking and a wide range of services. Increased link capacities have
created new requirements for processing capabilities at both the network and
the user premises.

404 Multi-Core Embedded Systems

The complex broadband access environment requires inter-working devices
connecting network domains to provide the bridge/gateway functionality and
to efficiently route traffic between networks of diverse requirements and op-
erational conditions. These gateways constitute the enabling technology for
multimedia content to reach the end users, advanced services to be feasible,
and broadband access networking to become technically feasible and econom-
ically viable. A large market share of these devices includes the field of home
networks, including specialized products to interconnect different home appli-
ances, such as PCs, printers, DVD players, TV, over a home network structure,
letting them share broadband connections, while performing protocol transla-
tion (e.g., IP over ATM) and routing, enforcing security policies etc. The need
for such functionality has created the need for a new device, the residential
gateway (RG).

The RG allows consumers to network their PCs, so they can share Inter-
net access, printers, and other peripherals. Furthermore, the gateway allows
people to play multiplayer games or distribute movies and music throughout
the home or outdoors, using the broadband connection. The RG also enables
interconnection and interworking of different telephone systems and services,
wired, wireless, analog and IP-based, and supports telemetry and control ap-
plications, including lighting control, security and alarm, and in-home com-
munication between appliances [44].

A set of the residential gateway functions includes carrying and routing
data and voice securely between wide area network (WAN) and local area
network (LAN), routing data between LANSs, ensuring only the correct data
is allowed in and out of the premises, converting protocols and data, selecting
channels for bandwidth-limited LANSs, etc. [20]. RGs with minimal function-
ality can be transparent to multimedia applications (with the exception of the
requirement for QoS support for different multimedia traffic classes). However,
sophisticated RGs will be required to perform media adaptations (i.e., POTS
to voice over IP VoIP) or stream processing (i.e., MPEG-4) as well as control
functions to support advanced services like for example stateful inspection
firewalls and media gateways. All of the above networking applications are
based on a protocol stack implementation involving processing of several lay-
ers and protocols. The partitioning of these functions into system components
is determined by the expected performance of the overall system architecture.
Recent trends employ hardware peripherals as a means to achieve accelera-
tion of critical time-consuming functions. In any case the implementation of
interworking functions is mainly performed in software. It is evident though
that software implementations fail to provide real-time response, a feature
especially crucial for voice services and multimedia applications.

To better understand the system level limitations of a gateway supporting
these kinds of applications for a large number of flows, we show in Figure
12.2 the available system /processor clock cycles per packet, for different clock
frequencies, for three different link rates. Even in the best case where one pro-
cessor instruction could be executed in each cycle (which is far from true due

Embedded Multi-Core Processing for Networking 405

to pipeline dependencies, cache misses etc.), the number of instructions that
can be executed per packet is extremely low compared to the required process-
ing capacity of complex applications. Taking into account also the memory
bottlenecks of legacy architectures, it is evident that the overall system level
architecture must be optimized with respect to network processing in order
to cope with demanding services and multimedia applications.

100000
——66MHz
X
S < —— 133MHz
~
~
~ — % — 200MHz
10000 |- ~ = |
-
X
o
)
=
o
1000 -
100 ‘ ‘ ‘ ‘ ‘ ‘
0 50 100 150 200 250 300 350

Link Rate (Mbit/sec)

FIGURE 12.2: Available clock cycles for processing each packet as a function
of clock frequency and link rate in average case (mean packet size of 256 bytes
is assumed).

12.2.2 SoC Integration of Network Components and
Examples of Commercial Access NPUs

Currently, the major trend in network processing architectures centers on
their implementation by integrating multiple cores resulting in a system-on-
chip (SoC) technology. SoC technology provides high integration of processors,
memory blocks and algorithm-specific modules. It enables low cost implemen-
tation and can accommodate a wide range of computation speeds. Moreover,
it offers a supporting environment for high-speed processor interconnection,
while input/output (I/O) speed and the remaining off-SoC system speed can
be low. The resulting architecture can be used for efficient mapping of a vari-
ety of protocols and/or applications. Special attention is focused on the edge,
access, and enterprise markets, due to the scales of the economy in these mar-
kets. In order to complete broadband access deployment, major efforts are
required to transfer the acquired technological know-how from the high-speed
switching systems to the edge and access domain by either developing chips
geared for the core of telecom networks that are able to morph themselves

406

Multi-Core Embedded Systems

into access players, or by developing new SoC architectures tailored for the
access and residential system market.

<

Commercial
CPU

!

Standard processor bus

!

!

!

!

>

CO-processor —
data link control

CO-processor —
data link control

CO-processor —
data link control

Commercial chipsets
(PCMCIA etc.)

(FPGA or (FPGA or (FPGA or
commercial commercial commercial
chipsets) chipsets) chipsets)
Custom Custom Custom M :
ultiple PHY I/Fs
PHY PHY PHY P

FIGURE 12.3: Typical architecture of integrated access devices (IADs) based
on discrete components.

A common trend for developing gateway platforms to support multi-
protocol and multi-service functionality in edge devices was until recently
to use as main processing resources those of a commercial processor (Figure
12.3). Network interfaces were implemented as specialized H/W peripherals.
Protocol processing was achieved by software implementations developed on
some type of standard operating system and development platform. The main
bottleneck in this architecture is apparently on one hand the memory band-
width (due to the limited throughput of the main system memory) and on
the other hand the limited speed of processing in S/W.

Driven by the conflicting requirements of higher processing power ver-
sus cost reduction, SoC architectures with embedded processor cores and in-
creased functionality /complexity have appeared, replacing discrete component
integrated access devices (IADs). Recent efforts to leverage NPUs in access
systems aim to reduce the bottleneck of the central (CPU) memory. Fur-
thermore, the single on-chip bus that interconnects all major components in
typical architectures is another potential bottleneck. In an NPU-based archi-
tecture the bandwidth demands on this bus are reduced, because this bus
can become arbitrarily wide (Figure 12.4) or alternatively the processor and
peripheral buses can be separated. Therefore, such architectures are expected

Embedded Multi-Core Processing for Networking 407

to scale better, being able to support network devices with higher throughput
and more complex protocol processing than current gateways.

Control | | Bridge Network
RISC Processor

processor A

pm======" 1
| ! DSP/voice !

DRAM —p -
Memory B ’: co-processor |
""" > [
! S_Rf\M_l +-> controller FzTTTT T .
' J':_ CAM L | ¢ — p, Seourty !

1 CO-Processor
L, 1

<) Tgl\éll,oUSB, > Other on-chip
peripherals

(timers, interrupt
control etc.)

. . 1
Communication —>| < »! DMA :

processor 1 |
\ 4
Ull/POS Ml Ml HDLC

T Ul

FIGURE 12.4: Typical architecture of SoC integrated network processor for
access devices and residential gateways.

12.2.3 NPU Architectures for Core Network Nodes and
High-Speed Networking and Switching

Beyond broadband access, the requirements for specialized multi-core embed-
ded systems to perform network processing, as mentioned in the introduc-
tion of this section, have initially been considered in the context of replacing
the high-performance but with limited programmability ASICs traditionally
been developed to implement high-speed networking and switching in core
network nodes. Core network nodes include IP routers, layer 3 fast, gigabit
and 10 gigabit Ethernet switches, ATM switches and VoIP gateways. Next-
generation embedded systems require a silicon solution that can handle the
ever-increasing speed, bandwidth, and processing requirements. State-of-the-
art systems need to process information implementing complex protocols and
priorities at wire-speed and handle the constantly changing traffic capacity of
the network. NPUs have emerged as the promising solution to deliver high ca-
pacity switching nodes with the required functionality to support the emerg-
ing service and application requirements. NPUs are usually placed on the
data path between the physical layer and backplane within layer 3 switches or
routers implementing the core functionality of the router and perform all the

408 Multi-Core Embedded Systems

network traffic processing. NPUs must be able to support large bandwidth
connections, multiple protocols, and advanced features without becoming a
performance bottleneck. That is, NPUs must be able to provide wire-speed,
non-blocking performance regardless of the size of the links, protocols and
features enabled per router or switch port.

Centralized processing Distributed processing Distributed processing

Bus interconnect Bus interconnect Switched interconnect

FIGURE 12.5: Evolution of switch node architectures: (a) 15 generation (b)

224 generation (c) 3'4 generation.

In the evolution of switching architectures, 15t and 22d generation switches

relied on centralized processing and bus interconnection-based architectures
limiting local per port processing merely on physical layer adaptation. From
the single CPU multiple line cards with single electrical backplane of 18 gen-
eration switches, technology advanced to distributed processing in its gnd
generation with one CPU per line card and a central controller for routing
protocols and system control and management. A major breakthrough was
the introduction of the switch fabric for inter-connection in the 3" generation
switches, to overcome the interconnection bandwidth problem, whereas the
processing bottleneck was still treated with the same distributed architecture
(Figure 12.5).

The PDU flow is shown in more detail in Figure 12.6. For the 15t generation
switches shown in Figure 12.5 above, the network interface card (NIC) passes
all data to CPU, which does all the processing, resulting in inexpensive NICs
and overloaded interconnects (buses) and CPUs. The ond generation switches
relieve the CPU overload by distributed processing, placing dedicated CPUs
in each NIC; the interconnect bottleneck though remained. Finally 3rd gen-
eration switches introduced the switching fabric for efficient board-to-board
communication over electronic backplanes.

NPUs mainly aim to reduce CPU involvement, used either in a central-
ized or distributed fashion and have been introducing the modifications to
the architecture of Figure 12.6 as shown in Figure 12.7 below. In the central-
ized architecture (Figure 12.7a), the NIC passes all data to a high bandwidth
NPU, which does all packet processing assuming the same protocol stack for all
ports. Performance degrades with increased protocol complexity and increased
numbers of ports. In a distributed architecture (Figure 12.7b) the CPU config-

Embedded Multi-Core Processing for Networking 409

CPU

I PDU

PDU PDU

H Network ' ' Switch ' ' Network ' '

Interface Card Fabric Interface Card

FIGURE 12.6: PDU flow in a distributed switching node architecture.

ures NPU execution and NPUs do all packet processing, possibly assisted by
specialized traffic managers (TMs) for performing complex scheduling/shap-
ing and buffer management algorithms. Each port can execute independent
protocols and policies through a programmable NIC architecture.

CPU
Control
L= |

V| Switch ""”
Fabric

Control
NPU
PDU

Network| PDU ; PDU Network
Switch
Interface| Interface|
Card Fabric Card

@ ' ' (b)

FIGURE 12.7: Centralized (a) and distributed (b) NPU-based switch archi-
tectures.

NPUs present a close coupling of link-layer interfaces with the pro-
cessing engine, minimizing the overhead typically introduced in generic
microprocessor-based architectures by device drivers. NPUs use multiple ex-
ecution engines, each of which can be a processor core usually exploiting
multi-threading and/or pipelining to hide DRAM latency and increase the
overall computing power. NPUs may also contain hardware support for hash-
ing, CRC calculation, etc., not found in typical microprocessors. Figure 12.8
shows a generic NPU architecture, which can be mapped to many of the NPUs
discussed in the literature and throughout this chapter. Additional storage is
also present in the form of SRAM (synchronous random access memory) and
DRAM (dynamic random access memory) to store program data and network
traffic. In general, processing engines are intended to carry out data-plane
functions. Control-plane functions could be implemented in a co-processor, or
a host processor.

An NPU’s operation can be explained in terms of a representative appli-
cation like IP forwarding, which could be tentatively executed through the
following steps:

1. A thread on one of the processing engines handles new packets that
arrive in the receive buffer of one of the input ports.

410 Multi-Core Embedded Systems

Off-chip |3,
memory | i
[
1:1&;;::‘_'_:
Vvv
_ | Generic ‘ fabric interface H memory interface
g 8 CPU A A N
<
= g -
- =3 El A Yy On-chip
o = T I LI ey s [»| memory
9
Y vV v vV v \ 4
Custom | Hardwired
Processing Functional
Engines Ungines
\ \
\ \

1/0 interface

FIGURE 12.8: Generic NPU architecture.

2. The (same or alternative) thread reads the packet’s header into its reg-
isters.

3. Based on the header fields, the thread looks up a forwarding table to
determine to which output queue the packet must go. Forwarding tables

are organized carefully for fast lookup and are typically stored in the
high-speed SRAM.

4. The thread moves the rest of the packet from the input interface to
packet buffer. It also writes a modified packet header in the buffer.

5. A descriptor to the packet is placed in the target output queue, which
is another data structure stored in SRAM.

6. One or more threads monitor the output ports and examine the output
queues. When a packet is scheduled to be sent out, a thread transfers it
from the packet buffer to the port’s transmit buffer.

The majority of the commercial NPUs fall mainly into two categories: The
ones that use a large number of simple RISC (reduced instruction set com-
puter) CPUs and those with a number (variable depending on their custom
architecture) of high-end, special-purpose processors that are optimized for
the processing of network streams. All network processors are system-on-chip
(SoC) designs that combine processors, memory, specialized logic, and I/0
on a single chip. The processing engines in these network processors are typi-
cally RISC cores, which are sometimes augmented by specialized instructions,
multi-threading, or zero-overhead context switching mechanisms. The on-chip
memory of these processors is in the range of 100KB to 1MB.

Embedded Multi-Core Processing for Networking 411

Within the first category we find:

e Intel IXP1200 [28] with six processing engines, one control processor,
200 MHz clock rate, 0.8-GB/s DRAM bandwidth, 2.6-Gb/s supported
line speed, four threads per processor

e Intel IXP2400 and Intel IXP2800 [19] with 8 or 16 micro- engines, one
control processor and 600 MHz or 1.6GHz clock rates, while also sup-
porting 8 threads per processor

e Freescale (formerly Motorola) C-5 [6] with 16 processing units, one con-
trol processor, 200 MHz clock rate 1.6-GB/s DRAM bandwidth, 5-Gb/s
supported line speed and four threads per processor

e CISCOs Toaster family [7] with 16 simple microcontrollers

All these designs generally adopt the parallel RISC NPU architecture em-
ploying multiple RISCs augmented in many cases with datapath co-processors
(Figure 12.9(a)). Additionally they employ shared engines capable of deliver-
ing (N x port BW) throughput interconnected over an internal shared bus of
4 x total aggregate bandwidth capacity (to allow for at least two read/write
operations per packet) as well as auxiliary external buses for implementing
insert /extract interfaces to external controllers and control plane engines.

Although the above designs can sustain network processing from 2.5 to 10
Gbps, the actual processing speed depends heavily on the kind of application
and for complex applications it degrades rapidly. Further, they represent a
brute-force approach, in the sense that they use a large number of processing
cores, in order to achieve the desired performance.

The second category includes NPUs like:

e EZChips NP1 [9] with a 240 MHz system clock that employs multiple
specific-purpose (i.e., lookup) processors as shared resources without
being tied to a physical port

e HiFns (formerly IBMs) PowerNP [17] with 16 processing units (pico-
processors), one control processor, 133 MHz clock rate, 1.6-GB/s DRAM
bandwidth, eight-Gb/s line speed and two threads per processor, as well
as specialized engines for look-up, scheduling and queue management

These designs may follow different approaches most usually found as either
pipelined RISC architectures including specialized datapath RISC engines for
executing traffic management and switching functions (Figure 12.9(a)), or
generally programmable state machines which directly implement the required
functions (Figure 12.9(b)). Both these approaches have the feature that the
internal data path bus is required to offer only 1 x total aggregate bandwidth.

Although, the aforementioned NPUs are capable of providing a higher
processing power for complicated network protocols, they lack the parallelism
of the first category. Therefore, their performance, in terms of bandwidth

412 Multi-Core Embedded Systems

Data out Ports

In tial
Match 001

Data in
[

Classificatier

Protocol Processor

Match 011

Match 011

:'/)
D?;in o watch 111

| HI | Modification SM
1

[Hi | switch fabric |
[1

RISCn
[Queue Manager :

[Butter Managered

0]
0]

Data out
External CPU bus Ports

_Scheduling SM

Data out

(a) (b) ©

FIGURE 12.9: (a) Parallel RISC NPU architecture (b) pipelined RISC NPU
architecture (c) state-machine NPU architecture.

serviced, is lower than the one of the first category whenever there is a large
number of independent flows that should be processed.

Several of these architectures are examined in the next section, while the
micro-architectures of several of the most commonly found co-processors and
hardwired engines are discussed throughout this chapter.

12.3 Programmable Packet Processing Engines

NPUs are typical domain-specific architectures: in contrast to general purpose
computing, their applications fall in a relatively narrow domain, with certain
common characteristics that drive several architectural choices. A typical net-
work processing application consists of a well-defined pipeline of sequential
tasks, such as: decapsulation, classification, queueing, modification, etc. Each
task may be of small to modest complexity, but has to be performed with
a very high throughput, or repetition rate, over a series of data (packets),
that most often are independent from each other. This independence arises
from the fact that in most settings the packets entering a router, switch, or
other network equipment, belong to several different flows. In terms of archi-
tectural choices, these characteristics suggest that emphasis must be placed
on throughput, rather than latency. This means that rather than architecting
a single processing core with very high performance, it is often more efficient
to utilize several simpler cores, each one with moderate performance, but with
a high overall throughput. The latency of each individual task, executed for
each individual packet, is not that critical, since there are usually many inde-
pendent data streams processed in parallel. If and when one task stalls, most
of the time there will be another one ready to utilize the processing cycles

Embedded Multi-Core Processing for Networking 413

made available. In other words, network processing applications are usually
latency tolerant.

The above considerations give rise to two architectural trends that are
common among network processor architectures: multi-core parallelism, and
multi-threading.

12.3.1 Parallelism

The classic trade-off in computer architecture, that of performance versus cost
(silicon area) manifests itself here as single processing engine (PE) perfor-
mance versus the number of PEs that can fit on-chip. In application domains
where there is not much inherent parallelism and more than a single PE can-
not be well utilized, high single-PE performance is the only option. But where
parallelism is available, as is the case with network processing, the trade-off
usually works out in favor of many simple PEs. An added benefit of the simple
processing core approach is that typically higher clock rates can be achieved.
For these reasons, virtually all high-end network processor architectures rely
on multiple PEs of low to moderate complexity to achieve the high through-
put requirements common in the OC-48 and OC-192 design points. As one
might expect, there is no obvious “sweet spot” in the trade-off between PE
complexity and parallelism, so a range of architectures have been used in the
industry.

Typical of one end of the spectrum are Freescale’s C-port and Intel’s IXP
families of network processors (Figure 12.10). The Intel IXP 2800 [2][30] is
based on 16 microengines, each of which implements a basic RISC instruction
set with a few special instructions, contains a large number of registers, and
runs at a clock rate of 1.4 GHz. The Freescale C-5e [30] contains 16 RISC
engines that implement a subset of the MIPS ISA in addition to 32 custom
VLIW processing cores (Serial Data Processors, or SDPs) optimized for bit
and byte processing. Each RISC engine is associated with one SDP for the
ingress path, that performs mainly packet decapsulation and header parsing,
and one SDP for the egress path, that performs the opposite functions —
those of packet composition and encapsulation.

Further reduction in PE complexity, with commensurate increase in PE
count, is seen in the architecture of the iFlow Packet Processor (iPP) [30] by
Silicon Access Networks. The iPP is based on an array of 32 simple processing
elements called Atoms. Each Atom is a reduced RISC processor, with an
instruction set of only 47 instructions. It is interesting to note, however, that
many of these are custom instructions for network processing applications.

As a more radical case, we can consider the PRO3 processor [37]: its main
processing engine, the reprogrammable pipeline module (RPM) [45] consists of
a series of three programmable components: a field extraction engine (FEX),
the packet processing engine proper (PPE), and a field modification engine
(FMO), as shown in Figure 12.11. The allocation of tasks is quite straightfor-
ward: packet verification and header parsing are performed by FEX, general

414 Multi-Core Embedded Systems

L THHHE
| == BN e
% It
D Bus S Bus D Bus S Bus E \Tm
e B we ||| e B e | oLy b B e
@
| ME 23 ME | | ME 223 ME | iz |
@ [
| ME 94 ME | | ME 93 ME | B e e
- -]
| ME 94 ME | | ME 23 ME | : " /
Cluster 0 Cluster 1 — - ’ A InEc";m LI
Crypto DRAM Controller ool | 7] L
—— R T

FIGURE 12.10: (a) Intel IXP 2800 NPU, (b) Freescale C-5¢ NPU.

processing on the PPE, and modification of header fields or composition of
new packet headers is executed on the FMO. The PPE is based on a Hyper-
stone RISC CPU, with certain modifications to allow fast register and memory
access (to be discussed in detail later). The FEX and FMO engines are bare-
bones RISC-like processors, with only 13 and 22 instructions (FEX and FMO,
respectively).

In another approach, a number of NPU architectures attempt to take
advantage of parallelism at a smaller scale within each individual PE.
Instruction-level parallelism is usually exploited by superscalar or Very-Long-
Instruction-Word (VLIW) architectures. Noteworthy is EZchip’s architecture
[9][30], based on superscalar processing cores, that EZchip claims are up to
10 times faster on network processing tasks than common RISC processors.
SiByte also promoted the use of multiple on-chip four-way superscalar proces-
sors, in an architecture complete with two-level cache hierarchy. Such archi-
tectures of course are quite expensive in terms of silicon area, and therefore
only a relatively small number of PEs can be integrated on-chip. Compared to
superscalar technology, VLIW is a lot more area-efficient, since it moves a lot
of the instruction scheduling complexity from the hardware to the compiler.
Characteristic of this approach are Motorola’s SDP processors, mentioned
earlier, 32 of which can be accommodated on-chip, along with all the other
functional units.

Another distinguishing feature between architectures based on parallel
PEs is the degree of homogeneity: whether all available PEs are identical, or
whether they are specialized for specific tasks. To a greater or lesser degree,
all architectures include special-purpose units for some functions, either fixed
logic or programmable. The topic of subsequent sections of this chapter is to
analyze the architectures of the more commonly encountered special-purpose
units. At this point, it is sufficient to note that some of the known archi-

Embedded Multi-Core Processing for Networking 415

uP bus

(Tl e xractor 1)1 FoA o Modter
s RW portdy |
modified
IN from RISC RISC - CPU OUT ta
shared Ate : sh;::d

bus d:'fpath | m

Protocol processing engine |

Packet delay AFO

FIGURE 12.11: Architecture of PRO3 reprogrammable pipeline module
(RPM).

tectures place emphasis on many identical programmable PEs, while others
employ PEs with different variants of the instruction set and combinations of
functional units tailored to different parts of the expected packet processing
flow.

Typical of the specialization approach is the EZchip architecture: it em-
ploys four different kinds of PEs, or Task-OPtimized cores (TOPs):

e TOPparse, for identification and extraction of header fields and other
keywords across all 7 layers of packet headers

e TOPsearch, for table lookup and searching operations, typically encoun-
tered in classification, routing, policy enforcement, and similar functions

e TOPresolve, for packet forwarding based on the lookup results, as well
as updating tables, statistics, and other state for functions such as ac-
counting, billing, etc.

e TOPmodify, for packet modification

While the architectures of these PEs all revolve around EZchip’s super-
scalar processor architecture, each kind has special features that make it more
appropriate for the particular task at hand.

Significant architectures along these lines are the fast pattern processor
(FPP) and routing switch processor (RSP), initially of Agere Systems and
currently marketed by LSI Logic. Originally, these were separate chips, that

416 Multi-Core Embedded Systems

‘ TOP TOP TOP TOP
parse search resolve modify

FIGURE 12.12: The concept of the EZchip architecture.

together with the Agere system inteface (ASI) formed a complete chipset for
routers and similar systems at the OC-48c design point. Later they were inte-
grated into more compact products, such as the APP550 single-chip solution
(depicted in Figure 12.13) for the OC-48 domain and the APP750 two-chip
set for the OC-192 domain. The complete architecture is based on a variety
of specialized programmable PEs and fixed-function units. The PEs come in
several variations:

e The packet processing engine (PPE), responsible for pattern matching
operations such as classification and routing. This was the processing
core of the original FPP processor.

e The traffic management compute engine, responsible for packet discard
algorithms such as RED, WRED, etc.

e The traffic shaper compute engine, for CoS/QoS algorithms.

e The stream editor compute engine, for packet modification.

At the other end of the spectrum we have architectures such as Intel’s
IXP and IBM’s PowerNP, that rely on multiple identical processing engines,
that are interchangeable with each other. The PowerNP architecture [3][30] is
based on the dyadic packet processing unit (DPPU), each of which contains
two picoprocessors, or core language processors (CLPs), supported by a num-
ber of custom functional units for common functions such as table lookup.
Each CLP is basically a 32-bit RISC processor. For example, the NP4GS3
processor, an instance of the PowerNP architecture, consists of 8 DPPUs (16
picoprocessors total) each of which may be assigned any of the processing
steps of the application at hand. The same holds for the IXP and iFlow archi-
tectures, that, as mentioned earlier, consist of arrays of identical processing
elements. The feature that differentiates this class of architectures from the
previous is that for every task that needs to be performed on a packet, the
“next available” PE is chosen, without constraints. This is not the case for
the EZchip and Agere architectures, where processing tasks are tied to specific
PEs.

Finally, we may distinguish a class of architectures that fall in the middle
ground, and that includes the C-port and PRO3 processors, among others.

Embedded Multi-Core Processing for Networking 417
POS-PHY
/UTOPIA
or ’7 MACs
GMIl/sSMII
Input Buffer
Interface T LL
32-bit v Y ¥y
POS-PHY Copro- Buffer Scheduler Stream
cessor Manager / Shaper Editor POS-PHY
Interf: hh
neniace (SED) /UTOPIA
v T or
Packet v GMII/SMII
Processing Output B
Engine Interface 13
(PPE) 32-bit
Copro- POS-PHY
Statistics interface
;

FIGURE 12.13: Block diagram of the Agere (LSI) APP550.

The basis of these architectures is an array of identical processing units, each
of which consists of a number of heterogeneous PEs. Recall the combination
of reduced MIPS RISC with the two custom VLIW processors that form the
Channel Processor (CP) of the C-port architecture, or the Field Extractor,
Packet Processing Engine, and Field Modifier, that together form the repro-
grammable pipeline module (RPM) of PRO3. A CP or RPM can be repeated
as many times as silicon area allows, for a near-linear increase in performance.

With all heterogeneous architectures, the issue of load balancing arises.
What is the correct mix of the different kinds of processing elements, and/or,
what is the required performance of each kind? Indeed, there is no simple
answer that will satisfy all application needs. NPU architects have to resort
to extensive profiling of their target applications, based on realistic traffic
traces, to determine a design point that will be optimal for a narrow class of
applications, provided of course that their assumptions on traffic parameters
and processing requirements hold. The broader the target market is for a
specific processor, the more difficult it is to attain a single mix of PEs that
will satisfy all applications. On the contrary, with homogeneous architectures
PEs can be assigned freely to different tasks according to application needs.
This may even be performed dynamically, following changing traffic patterns
and the mix of traffic flows with different requirements. Of course, for such
flexibility one has to sacrifice a certain amount of performance that could be
achieved by specialization.

In terms of communication between the processing elements, most NPU
architectures avoid fancy and costly on-chip interconnection networks. To jus-
tify such a choice, one must consider how packets are processed within an

418 Multi-Core Embedded Systems

NPU. Processing of packets that belong to different flows is usually indepen-
dent. On the other hand, the processing stages for a single packet most often
form a pipeline, where the latency between stages is not that critical. There-
fore, for most packet processing needs, some kind of shared memory will be
sufficient. Note however that usage of an external memory for this purpose
would cause a severe bottleneck at the chip I/Os, so on-chip RAM is the norm.
For example, in the FPP architecture, a block buffer is used to hold 64-byte
packet segments (or blocks) until they are processed by the Pattern Process-
ing Engine, the Queue Engine, and other units. In the more recent APP550
incarnation of the architecture, all blocks share access to 3 MB of embedded
on-chip DRAM. Similarly, in the PowerNP architecture, packets are stored
in global on- and off- chip data stores and from there packet headers are
forwarded to the next available PE for processing. No direct communication
between PEs is necessary in the usual flow of processing.

There are of course more elaborate communication schemes than the above,
with most noteworthy probably the IXP case. In this architecture, PEs are
divided in two 8-PE clusters. The PEs of each cluster communicate with each
other and with other system components over two buses (labeled D and S). No
direct communication between the two clusters is possible. Each PE (Figure
12.14) has a number of registers, called transfer registers, dedicated to inter-PE
communication. By writing to an output transfer register, a PE can directly
modify the corresponding input transfer register of another PE. Furthermore,
another set of registers is dedicated to nearest neighbor communication. With
this scheme, each PE has direct access to the appropriate register of its neigh-
bor. In this way, a very efficient ring is formed.

In the C-port family, a hierarchy of buses is also used. Three different
buses, with bandwidths ranging from 4.2 to 34.1 Gbits/sec (on the C-5e), are
used to interconnect all channel processors and other units with each other.

12.3.2 Multi-Threading Support

Turning now to the microarchitecture of the individual PEs, a prevailing trend
in NPU architectures is multi-threading. The reason that most NPU vendors
have converged to this technique is that it offers a good method to overcome
the unavoidably long latency of certain operations. Table lookup is a char-
acteristic one. It is often handled by specialized coprocessors and can take
a large number of clock cycles to complete. But as with all complex SoCs,
even plain accesses to external memories, such as the packet buffer, incur a
significant latency. Multi-threading allows a processing element to switch to a
new thread of execution, typically processing a different packet, every time a
long-latency operation starts. It is important to note here that the nature of
most network processing applications allows multi-threading to be very effec-
tive, since there will almost always be some packet waiting to be processed,
and each packet can be associated with a thread. So, ready-to-run threads
will almost always be available and most of the time long latency operations

Embedded Multi-Core Processing for Networking 419

of one or more threads will overlap with processing of another thread. In this
way, processing cycles will almost never get wasted waiting for long-running
operations to complete.

D Push S Push
From prev To next
neighbor ﬁ neighbor
1 \T/ \T/ >
General Next D S
Local Control
RAM Purpose Neighbor Tralr;\lsfer Tralr’:sfer Store
640 8x32x32 8x16x32 8x16x32 8x16x32 4K
words ‘ words

V y y A y V

Special
Units:
PseudoRand
CRC Unit ALU
CRC Rem Arithmetic, Logical, Multiply, CAM
Local CSRs
Timers v
Timestamp l l
D S
Transfer Transfer
ouT ouTt
8x16x32 8x16x32

L L
D Pull v v SPull

FIGURE 12.14: The PE (microengine) of the Intel IXP2800.

For multi-threading to be effective, switching between threads must be pos-
sible with very little or no overhead. Indeed, many network processor vendors
claim zero-overhead thread switching. To make this possible, the structure of
the PE is augmented with multiple copies of all execution state. By the term
state we define the content of registers and memory, as well as the program
counter, flags and other state bits, depending on the particular architecture.
So, multi-threaded PEs typically have register files partitioned into multiple
banks, one per supported thread, while local memory may also be partitioned
per thread. Events that trigger thread switching can be a request to a copro-
cessor or an external memory access. On such an event, the current thread
becomes inactive, a new thread is selected among those ready for execution,
and the appropriate partition of the register file and related state is activated.
When the long-running operation completes, the stalled thread will become
ready again and get queued for execution.

A critical design choice is the number of supported threads per PE. If
the PE does not directly support enough threads in hardware, the situation
will often arise that all supported threads are waiting for an external access,

420 Multi-Core Embedded Systems

in which case the processing cycles remain unused. Processors with shorter
cycle times and more complex coprocessors (requiring longer to complete) or
a slower external memory system will require more threads. On the other hand,
the cost of supporting many threads can have a significant impact on both die
area and cycle time. Therefore, this parameter must be chosen very judiciously,
based on profiling of target applications and performance simulations of the
planned architecture.

Most industrial designs offer good examples of multi-threading: Each pi-
coprocessor in IBM’s NP4GS3 supported two threads, a number that was ap-
parently found insufficient and later raised to four in the more recent 5NP4G
(marketed by HiFn). Threads also share a 4 KB local memory available within
each DPPU of the NP4GS3, each one having exclusive access to a 1 KB seg-
ment. The iPP and IXP architectures are very similar with respect to multi-
threading; each architecture supports eight threads per PE, each with its reg-
ister file partition and other state. Thread switching is performed with zero
overhead, when long-running instructions are encountered along the thread’s
execution path. Such instructions may be external memory accesses or com-
plex functions executed on a coprocessor. The programmer also has the pos-
sibility to relinquish control by executing special instructions that will cause
the current thread to sleep, waiting for a specific event. Finally, noteworthy
is the case of the FPP, whose single PE supports up to 64 threads!

The PRO3 processor follows a different approach for overlapping process-
ing with slow memory accesses. The FEX-PPE-FMO pipeline is organized
in such a way that these processing engines almost always work out of local
memory. The PPE’s register file has two banks. One of them can be accessed
directly by either FEX or FMO, at the same time that the PPE is executing,
using the other bank. In addition, the PPE’s local memory has two ports,
one of which can be accessed by an external controller. When a packet arrives
at the RPM, the FEX extracts all necessary fields from its headers, under
program control. It then writes the values of these fields into one bank of the
PPE register file. To retrieve per-flow state from off-chip memory, a flow iden-
tifier (Flowld) is constructed from the packet header, that is used as index to
memory. State retrieved thus is written into the PPE’s local memory over its
external port. These actions can take place while the PPE is still processing
the previous packet. When it finishes, the PPE does not need to output the
results explicitly, since the FMO can pull the results directly out of the PPE’s
register file. A data I/O controller external to the PPE will also extract data
from the PPE’s local memory to update flow state in the off-chip RAM. All
that the PPE needs to do is to switch the two partitions of the register file and
local RAM and restart executing. The relevant header fields and flow state
will already be present in its newly activated partitions of the register file
and local RAM respectively. In this way, data I/O instructions are eliminated
from the PPE code and computation largely overlaps with I/O (output of the
previous packet’s results and input of the next packet’s data). With the PPE
working on local memory (almost) all the time, there is very little motivation

Embedded Multi-Core Processing for Networking 421

for multi-threading support. So, PRO3 PPEs do not need to support more
than one thread.

12.3.3 Specialized Instruction Set Architectures

Finally, the instruction set architecture (ISA) is another area where vendors
tend to innovate and differentiate from each other. While some vendors rely on
more-or-less standard RISC instruction sets, it is recognized by many that this
is not an efficient approach; instead, an instruction set designed from scratch
and optimized for the special mix of operations common in packet processing
can give a significant performance edge over a simple RISC ISA. This is easy
to comprehend if one considers that RISC instruction sets have resulted from
years of profiling and analyzing general-purpose computing applications; it
is only natural to expect that a similar analysis on networking applications
should be the right way to define an instruction set for an NPU.

Based on the above rationale, many NPU vendors claim great break-
throughs in performance, solely due to such an optimized instruction set.
AMCC has dubbed its ISA NISC (network instruction set computing) in anal-
ogy to RISC. EZchip promotes its Task Optimized Processing Core technology,
with customized instruction set and datapath for each packet processing stage.
Interestingly, both vendors claim a speedup over RISC-based architectures in
the order of 10 times. Finally, Silicon Access, with its iFlow architecture,
also based on a custom instruction set, claimed double the performance of its
nearest competitor.

One can distinguish two categories of special instructions encountered in
NPU ISAs: those that have to do with the coordination of multiple PEs and
multiple processing threads working in parallel, and those that perform packet
processing-oriented data manipulations. In the first category one can find
instructions for functions such as thread synchronization, mutual exclusion,
inter-process (or -thread) communication, etc. We can mention for example
support in the IXP ISA for atomic read-modify-write (useful for mutual ex-
clusion) and events, used for signalling between threads. Instructions that fall
in this first category are also encountered in parallel architectures outside of
the network processing domain. In the following we will focus on the data
manipulation operations.

Arguably the most common kinds of operations in packet processing have
to do with header parsing and modification: extraction of bit fields of arbitrary
length from arbitrary positions in the header for the parsing stage, on packet
ingress, or similar insertions for the modification stage, on packet egress. Many
NPU architectures cater to accelerate such operations with custom instruc-
tions. For example, the IXP combines shifting with logical operations in one
cycle, to speed-up the multiple shift-and-mask operations needed to parse a
header. Also, the iFlow architecture supports single-cycle insertion and ex-
traction of arbitrary bit fields. The same is true for the Field Extractor and
Field Modifier in the PRO3 architecture.

422 Multi-Core Embedded Systems

Multi-way branches are also common when parsing fields such as packet
type, or encoded protocol identifiers. With standard RISC instruction sets, a
wide switch statement is translated into many sequential compare-and-branch
statements. Custom ISAs accelerate this kind of code by special support for
conditional branches. Silicon Access claimed to be able to speed up such cases
by up to 100 times, with a technology dubbed massively parallel branch accel-
eration that allows such a wide switch to be executed in only two clock cycles.
As another example, the IXP microengine includes a small CAM that can be
used to accelerate multi-way branches, by allowing up to 16 comparisons to
be performed in parallel, providing at the same time a branch target.

Predicated execution is another branch optimization technique, that is
actually borrowed from the DSP world. It allows execution of certain instruc-
tions to be enabled or disabled based on the value of a flag. In this way,
many conditional branch operations are avoided, something that can speed
up significantly tight loops with many short if-then-else constructs. The CLP
processor of the PowerNP architecture is an example of such an instruction
set.

Finally, many architectures provide instructions for tasks such as CRC
calculation and checksumming (1’s complement addition), evaluation of hash
functions, pseudorandom number generation, etc. Another noteworthy addi-
tion is support in the IXP architecture for efficient linked list and circular
buffer operations (insert, delete, etc). Given that the use of such structures in
networking applications is very common, such hardware support has a signif-
icant potential for overall code speedup.

12.4 Address Lookup and Packet Classification Engines

The problem of packet classification is usually the first that has to be tackled
when packets enter a router, firewall, or other piece of network equipment.
Before classification the system has no information regarding how to handle
incoming packets. To maintain wire speed operation, it has to decide very
quickly what to do with each new packet received: queue it for processing,
and if so, to which queue? Discard it? Any other possibility? The classifier
is the functional unit that will inspect the packet and provide the necessary
information for such decisions.

In general, a classifier receives an unstructured stream of packets and by
applying a configurable set of rules it splits this stream into parallel flows of
packets, with all packets that belong to the same flow having something in
common. The definition of this common feature is arbitrary. Historically it
has been the destination port number (where classification served solely the
purpose of forwarding). But more recently it may represent other notions, such
as same QoS requirements, or type of security processing, or other. Whatever

Embedded Multi-Core Processing for Networking 423

this common characteristic is, it implies that all packets of a flow will be
processed by the router in the same manner, at least for the next stage (or
stages) of processing. The decision as to how to classify each incoming packet
depends on one (rarely) or multiple (more commonly) fields of the packet
header(s) at various layers of the protocol hierarchy.

Classification is not an easy problem, especially given that it has to be
performed at wire speed. Even in the case of simple route lookup based on
the packet’s destination IP address (probably the simplest special case of the
problem) it is not trivial. Consider that an IPv4 address is 32 bits wide,
with normally up to 24 bits used for routing. A naive table implementation
would contain 224 entries, something prohibitive. However, such a table would
be quite sparse, motivating implementations based on various kinds of data
structures. The size of such a table would be a function of the active (valid)
entries only. Unfortunately, this is still a large number. Up-to-date statistics
maintained by [1] show that as of this writing, the number of entries in the
Internet’s core routers (known as the BGP table, from the Border Gateway
Protocol) has exceeded 280,000 and is still rising. Searching such a table at
wire speed at 10 Gbps is certainly a challenge; assuming a flow of minimum-
size IP packets, only 32 nsec are available per search. Consider now that this
is only a one-dimensional lookup. In more demanding situations classification
has to be based on multiple header fields. Typical is the quintuple of source
and destination IP addresses, source and destination port numbers, and layer
4 protocol identifier, often used to define a flow. Finally, such tables have to
be updated dynamically in large metropolitan and wide area networks, more
than 1000 times per second.

Classification also appears further down the processing pipeline, depending
on the application. Classification based on the aforementioned quintuple is
applicable to tasks such as traffic management, QoS assurance, accounting,
billing, security processing, and firewalls, just to name a few. Classification
can even be performed on packet payload, for example on URLs appearing
in an HTTP message, for applications such as URL filtering and URL-based
switching.

Formally, the problem of classification can be stated as follows: For any
given packet, a search key or lookup key is defined as an arbitrary selection of
N header fields (an N-tuple). A rule is a tuple of values, possibly containing
wildcards, against which the key has to be matched. A rule database is a
prioritized list of such rules. The task of classification is to find the highest
priority rule that matches the search key. In most cases, the index of the
matching rule is used as the flow identifier (HowID) associated with all packets
that match the same rule. So, each rule defines a flow.

Wildcards usually take one of two forms: (i) prefixes, usually applicable to
IP addresses. For example, the set of addresses 192.168.*.* is a 16-bit prefix.
This is an effect of the way Classless Interdomain Routing (CIDR) [11] works
and gives rise to a variety of longest-prefix matching (LPM) algorithms and
(ii) ranges, most commonly used with port numbers, such as 100-150.

424 Multi-Core Embedded Systems

12.4.1 Classification Techniques

The simplest and fastest way to search a rule database is by use of a content-
addressable memory (CAM). Indeed, CAMs are used often in commercial
classification engines, even though they have certain disadvantages. In contrast
to a normal memory, that receives an address and provides the data stored in
that address, a CAM receives a data value and returns the address where this
value is found. The entire array is searched in parallel, usually in a single clock
cycle, the matching locations are identified by their address, and a priority
encoder resolves potential multiple matches. One or more match addresses
may be returned.

The growing importance of LPM matching has given rise to Ternary
CAMs, or TCAMs, that support wildcarding. For every bit position in a
TCAM, two actual bits are used: a care/don’t care bit and the data bit.
All the care/don’t care bits of a memory address form a mask. In this way
prefixes can be easily specified. For example the IP address prefix 192.168.*.*
can be specified with data value OxC0OA80000 and mask 0xFFFF0000.

Comparand
Bus | Comparand Register |
Global Mask Registers
Result TCAM Array
Bus . |
<—| Status Register [>
Instruction
Bus
— Control
I? " 'ro < :I Address Counter
_ ogic
Control
Signals

FIGURE 12.15: TCAM organization [Source: Netlogic].

Searching with a CAM becomes trivial. One needs only concatenate the
relevant header fields, provide those to the CAM, and wait for the match
address to be returned. The main disadvantage of CAMs (and even more so
of TCAMs) is the silicon area required, which is several times larger than that
of simple memory. This gives rise to high cost, limited overall capacity, and
impact on overall system dimensions. Furthermore, the parallel search of the
memory array causes a high power dissipation. In spite of these problems,
TCAMSs are not uncommon in commercial systems. They are certainly more
appropriate in highest throughput systems (such as OC-48 and OC-192 core
routers), which are also the least cost-sensitive.

For the cases where a TCAM is not deemed cost-efficient, a variety of algo-
rithmic approaches have been proposed and applied in many practical systems.

Embedded Multi-Core Processing for Networking 425

Most of these approaches store the rule database in SRAM or DRAM in some
kind of pointer-based data structure. A search engine then traverses this data
structure to find the best-matching rule. In practical systems, this search en-
gine may be fixed logic, although programmable units are also common, for
reasons of flexibility.

In the following we briefly review two representative techniques. A good
survey of algorithms can be found in [15]. When examining such algorithms,
one needs to keep in mind that in addition to lookup speed, such algorithms
must be evaluated for the speed and ease of incremental updates, and memory
size and cost (e.g., whether they require SRAM or DRAM).

12.4.1.1 Trie-based Algorithms

Many of the most common implementations of the classifier database are
based on the trie data structure [23]. A trie is a special kind of tree, used
for creating dictionaries for languages with arbitrary alphabets, that is quite
effective when words can be prefixes of other words (as is the case of IP address
prefixes). When the alphabet is the set of binary digits, a trie can be used
to represent a set of IP addresses and address prefixes. Searching for a prefix
in a single dimension, as in the case of route lookup, is simple: just traverse
the tree based on the digits of the search key, until either a match is found
or the key characters are exhausted. Obviously, nodes lower in the tree take
precedence, since they correspond to longer matches. The problem gets more
interesting when multidimensional searches are required.

A hierarchical or multilevel trie can be thought of as a three-dimensional
trie, where the third dimension corresponds to the different fields of an N-
dimensional key. Lookup involves traversing all dimensions in sequence, so
the lookup performance of the basic hierarchical trie search is O(Wd), where
W is the key width and d the number of dimensions. The storage requirements
are O(NdW), with N the number of rules. Finally, incremental updates are
possible with complexity O(d?W). Details on the construction and lookup of
hierarchical tries can be found in references such as [15].

Many variations of the basic algorithm have also been proposed. For exam-
ple, for two-dimensional classifiers, the grid-of-tries algorithm [41] enhances
the data structure with some additional pointers between nodes in the second
dimension tries, so that no backtracking is needed and the search time is re-
duced to O(W). However, this comes at the expense of difficult incremental
updates, so rebuilding the database from scratch is recommended. So, this
algorithm is appropriate for relatively static classifiers only.

12.4.1.2 Hierarchical Intelligent Cuttings (HiCuts)

This is representative of a class of algorithms based on the geometric inter-
pretation of classifiers. A two-dimensional classifier can be visualized as a set
of rectangles contained in a box that is defined by the overall ranges of the
two dimensions. For example, Figure 12.16 defines a classifier:

426 Multi-Core Embedded Systems

000 001 010 011 100 101 110 111
000 |{R6 [R7 R1 R4 R2
Rule X Y 001
R1 0* *
R2 1% * 010 R5
R3 0% 1% o1t
R4 10* 00*
RS * 010 100
R6 000 00* I R3
R7 001 00* 101
110
111
Y

FIGURE 12.16: Mapping of rules to a two-dimensional classifier.

While we use here a two-dimensional example for the purpose of illus-
tration, the algorithm generalizes to any number of dimensions. HiCuts [14]
constructs a decision tree based on heuristics that aim to exploit the structure
of the rules. Each node of the tree represents a subset of the space. A cut,
determined by appropriate heuristics, is associated with each node. A cut par-
titions the space along one dimension into N equal parts, creating N children,
each of which represents one N** of the original box. Each node is also asso-
ciated with all rules that overlap fully or partially with the box it represents.
Cutting proceeds until all leaf nodes contain at most B rules, where B is a
tunable parameter trading storage space for lookup performance. To match
a given search key, the algorithm traverses the decision tree guided by the
bits of the key, until it hits a leaf node. Then, the B or fewer rules that leaf
contains are searched sequentially to determine the best match.

12.4.2 Case Studies

Finally we review some of the most representative classification/table lookup
engines in the industry.

PowerNP. The Dyadic Packet Processing Unit (DPPU) of the PowerNP ar-
chitecture [3] contains two RISC cores, along with two Tree Search Engines
(TSEs), together with other coprocessors. The TSE is a programmable unit
that supports table lookup in three modes: full match (for looking up struc-
tures like MAC address tables), longest-prefix match (for example for layer
3 forwarding) and software-managed trees, the most general kind of search.
This last mode supports all the advanced search features, such as general N-
tuple matching, and support for arbitrary ranges in any dimension (not just
prefixes).

Embedded Multi-Core Processing for Networking 427

Operation of the TSE starts with a RISC core constructing the search
key from the appropriate header fields. Then, it issues a request to one of
the two TSEs of the DPPU to execute the search. The TSE first consults
the LuDefTable (Lookup Definition Table), an on-chip memory that contains
information about the available tables (where they are stored, the kind of
search to do, key sizes, tree formats, etc). The TSE also has access to the
system’s control store (control memory) where tables are stored, among other
data. The control store is a combination of on-chip memory with off-chip DDR
SDRAM and ZBT SRAM (in the newer NP4GX, Fast Cycle RAM (FCRAM)
is also used).

Typical performance numbers for the TSE of the NP4GS3 are from 8 to 12
million searches per second, depending on the type of search, a rate sufficient
to support basic processing at an OC-48 rate (2.5 Gbps), with minimum size
IP packets and one lookup per packet. In case higher performance is needed,
the NP4GS3 also supports external CAM.

Agere. The primary role of Agere’s (currently LSI Logic’s) Fast Pattern Pro-
cessor [30] is packet header parsing and classification. The Packet Processing
Engine (PPE), the main programmable unit of the FPP, is programmed in
Agere’s own Functional Programming Language (FPL). As its name implies,
FPL is a functional language, which is very appropriate for specifying patterns
to be matched. Supposedly, it also generates very compact machine code, at
least for the kinds of tasks encountered in packet classification. The FPP also
uses a proprietary, patented search technique, that Agere has dubbed Pat-
tern Matching Optimization. This technique places emphasis on fast lookups,
which are executed in time bounded by the length of the key (pattern) and
not by the size of the database.

The FPP processes data in 64-byte blocks. Complete processing of a packet
involves two steps, or passes. When packets enter the FPP, they are first
segmented to blocks and stored in the external packet buffer. At the same
time, the first block of each packet is loaded into a context, an on-chip storage
area that maintains short-term state for a running thread. With 64 threads
supported in hardware, there are 64 contexts to choose from. Once basic first-
pass processing is done, the packet is assigned to a replay queue, getting in line
for the second pass. When a context is available it is loaded and the second
pass starts. Once the second pass is over, the packet is sent downstream to
the RSP, followed by the classification results that the PPE retrieved.

While the original FPP relied on SRAM for classification database stor-
age, newer incarnations of the architecture, such as the 10 Gbps APP750NP,
replace this with FCRAM, reducing the cost and at the same time achieving
better performance than would be possible with regular DRAM.

Silicon Access. Silicon Access introduced the iFlow product family [30],
consisting of several chips: packet processor, traffic manager, accountant (for
billing etc) and not one but two search engines: the Address Processor (iAP)

428 Multi-Core Embedded Systems

and the Classifier (iCL). Even though the company did not survive the slow-
down of core network rollouts in the early 2000s, the architecture has several
interesting features that makes it worth examining.

The two search engines are designed for different requirements. The Ad-
dress Processor can perform pipelined, full or longest prefix matching opera-
tions on on-chip tree-based tables with keys ranging from 48 to 144 bits wide.
On the other hand, the Classifier is TCAM-based and performs general range
matching with keys up to 432 bits long. So, the iAP is more appropriate for
operations like address lookup, while the more general classification problem
is the task of the iCL.

The innovation of Silicon Access in the design of the iFlow chipset is un-
doubtedly the use of wide embedded DRAM, an architectural choice that in
many applications eliminates the need for external CAMs and SRAMs, and
even reduces the pressure on external DRAM. The two search engines rely
entirely on on-chip memory. The iAP has a total of 52 Mbits of memory,
holding 256K prefixes up to 48 bits long, 96 bits of associated data memory
per entry, and a smaller 8K by 256 per-next-hop associated data memory. The
iCL’s 9.5 Mbits of total memory are organized as 36K entries by 144 bits of
TCAM plus 128 bits associated data per entry. Of course, in both systems
multiple table entries can be combined to cover each device’s maximum key
width. The much smaller amount of total memory in the iCL is unavoidable,
given that most of it is organized as a TCAM, with much lower density than
plain RAM. It is also noteworthy that all embedded memory in these devices
is ECC protected, which makes them effective for high reliability applications.
In terms of performance, the devices are rated at 100 Msps (iCL) and 65 Msps
(iAP), allowing up to three or two, respectively, searches per minimum-size IP
packet on a 10 Gbps link. The embedded memory-based architecture of iAP
and iCL is of course both a curse and a blessing: on one hand it reduces the
chip count, cost, and power dissipation of the system; on the other, it places a
hard limit on the table sizes that can be implemented. Fortunately, multiple
devices can be combined to form larger tables, although this is unlikely to be
cost-effective.

In the following we give a few details about the organization and operation
of the iAP, the more interesting of the two devices from an algorithmic stand-
point [34]. The device has a ZBT SRAM interface, over which it is attached to
a network processor, such as the iPP. The network processor performs regular
memory writes to issue requests and memory reads to retrieve the results.
iAP’s operation is pipelined and with fixed latency, independent of the num-
ber of entries, prefix length or key length: it can start a new lookup every 2
clock cycles (at 133MHz), with a latency of 26 cycles.

The search algorithm, which is hardwired in fixed logic, takes advantage of
the very wide on-chip RAMs that allow many entries to be read out in parallel
and an equal number of comparisons to be made simultaneously. Prefixes are
stored in RAM in ascending order, with shorter prefixes treated as larger than
longer ones; for example, 11011%* is larger than 1101101%*. A three-level B-tree

Embedded Multi-Core Processing for Networking 429

1/O interface
A
request
results
A4
Format/schedule requests Result buffer
A A A
key mask
data
A 4 A4
B-tree level 0 Level 2| associated data
A
key mask index
data pointer
A 4 A 4 A4
B-tree level 1 Level 1 associated data
A
key mask index key,
mask pointer
v v v key
B-tree level 2 mask DRAM
| index i

FIGURE 12.17: iAP organization.

in on-chip SRAM provides pointers to the complete list of prefixes, stored in
on-chip DRAM. Traversing the three levels of the B-tree results in a pointer
to a small subset of the prefix list. A small number of parallel comparisons
there allows the correct prefix to be located.

We should also note that the architecture of the iAP allows table mainte-
nance (insertions and deletions of prefixes) to be performed in parallel with the
searches. The iAP can support up to 1 million updates per second, consuming
only about 20 percent of the search bandwidth.

EZchip. EZchip stresses the implementation of classifier tables in DRAM,
which helps reduce system cost, chip count and power dissipation. A sec-
ond feature emphasized is the support for long lookups (for arbitrary length
strings, such as URLs).

In EZchip’s heterogeneous architecture, the processing engine (Figure
12.18) dubbed TOPsearch is the one responsible for table lookup operations
[10]. This is primarily a fixed-logic engine, with a minimal instruction set de-
signed to support chained lookups, where the result of one lookup, possibly
combined with additional header fields, is used as the key for a new lookup.
TOPsearch supports three types of lookups: direct, hash, and tree-based. In
the latter case, the optimization employed to make operation at high link rates
possible is to store the internal nodes of the tree on-chip in embedded DRAM,
and the leaf nodes in external DRAM. The embedded memory organization,

430 Multi-Core Embedded Systems

with a 256-bit wide interface, allows up to three levels of the tree to be tra-
versed with a single memory access. Put together with the shorter access time
of on-chip DRAM, this architecture provides a significant speedup compared
with the more common external memory organization.

Finally, parallelism is employed: EZchip NPUs include a number of
TOPsearch engines, that can work concurrently on different packets. With all
the above optimizations, tables with over one million entries can be searched
at up to a 30 Gbps link rate with the NP-3 NPU.

Frame Embedded External
Memory DRAM DRAM

Long keys Internal Leaf nodes
nodes

Hardwired Lookup
Engine

From To
TOPparse TOPresolve
Cores Cores

Instruction Memory |
Sequencer

Dispatcher It

FIGURE 12.18: EZchip table lookup architecture.

Third-party search engines. A limited number of vendors specialize in
search engines, without a full network processing chipset in their portfolio. The
standardization of a coprocessor interface for search engines by the Network
Processing Forum!, dubbed LA-1(b) [13], helps in the integration of such
third-party devices into systems built around NPU families of most major
vendors.

Typical is the case of Netlogic Microsystems, which has been among the
leading suppliers of CAM and TCAM devices. The obvious path toward on-
chip integration has been to incorporate table lookup and maintenance logic
into the TCAM device, thus transforming what was only table storage into
a self-contained search engine. A number of variations on the theme are pro-
vided, ranging from plain address lookup engines for IP forwarding, to layer
four classification engines supporting N-tuple lookup, all the way to layer
seven processors for “deep packet inspection”, for applications such as URL
matching and filtering, virus signature recognition, stateful packet inspection,
etc.

With this kind of specialized search engine, key matching is becoming
increasingly sophisticated. For example, the above mentioned engines sup-

ILater merged into the Optical Internetworking Forum

Embedded Multi-Core Processing for Networking 431

port regular expression matching, an additional step up in complexity and
sophistication from the longest-prefix matching and range lookup that we
have discussed so far. In fact, a long search key may span the payload of
more than one packet. The capability of on-the-fly inspection of packets all
the way up to layer seven, combined with such sophisticated matching, leads
to new applications, such as intrusion detection, general malware detection,
application-based switching, etc. Standardization of interfaces, such as the
LA-1, certainly fosters innovation in this field, since it allows more players to
enter the market with alternative architectures.

12.5 Packet Buffering and Queue Management Engines

Most modern networking technologies (like IP, ATM, MPLS etc.) share the
notion of connections or flows (we adopt the term flow hereafter) that repre-
sent data transactions in specific time spans and between specific end-points
in the network for the implementation of networking applications. Further-
more scheduling among multiple per port, QoS and CoS queues requires the
discrimination of packet data and the handling of multiple data flows with
differentiated service requirements. Depending on the applications and algo-
rithms used, the network processor typically has to manage thousands of flows,
implemented as packet queues in the processor packet buffer [27]. Therefore,
effective queue management is key to high-performance network processing
as well as to reducing development complexity. In this section we focus on
the review of potential implementations within a NPU architecture and per-
formance evaluation of queue management, which is performed extensively
in network processing applications and show how HW cores can be used to
offload completely this task from other processing elements.

The requirements with regard to memory management implementations
in networking applications stem from the fact that data packets need to be
stored in an appropriate queue structure either before or after processing and
be selectively forwarded. These queues of packets need to at least serve the
first-in-first-out (FIFO) service discipline, while in many applications flexible
access to their data is required (in order to modify, move, delete packets or part
of a packet, which resides in a specific position in the queue, e.g., head or tail
of the queue etc.). In order to efficiently cope with these requirements several
solutions based on dedicated hardware have been proposed initially targeting
high-speed ATM switching where the fixed ATM cell size favored very efficient
queue management [39][33] [46] and later extended to management of queues
of variable-size packets [18]. The basic advantage of these implementations in
hardware is of course the higher throughput with modest implementation cost.
On the other hand the functions they can provide (e.g., single versus double
linked lists, operations in the head/tail of the queue, copy operations etc.)

432 Multi-Core Embedded Systems

needs to be selected carefully at the beginning of the design. Several trade-
offs between dedicated hardware and implementations in software have been
exposed in [48], in which specific implementations of such queue management
schemes in ATM switching applications are examined.

As in many other communication subsystems, memory access bandwidth
to the external DRAM-based packet data repository is the scarcest resource in
NPUs. For this reason, the NPU architecture must be designed very carefully
to avoid unnecessary data transfer across this memory interface. In an NPU
architecture, each packet byte may traverse the memory interface up to four
times, e.g., when encryption/decryption or deep packet parsing functions are
performed. This is also the case for short packets such as TCP/IP acknowl-
edgments, where the packet header is the entire packet, in order to perform
the following operations: (a) write packet to buffer on ingress, (b) read head-
er/packet into processing engines, (c) write back to memory, and (d) read for
egress transmission.

This means that for small packets, which typically represent 40 percent of
all Internet packets, the required memory interface capacities amount to 10,
40, or 120 Gb/s for OC-48, OC-192, or OC-768, respectively. Even the lowest of
these values, 10 Gb/s, exceeds the access rate of todays commercial DRAMs.
Complex memory-interleaving techniques that pipeline memory access and
distribute individual packets over multiple parallel DRAM (dynamic RAM)
chips can be applied for 10 Gb/s and possibly 40 Gb/s memory subsystems. At
120 Gb/s, todays 166 MHz DDR (double-data-rate) SDRAMs would require
well over 360-bit-wide memory interfaces, or typically some 25 DDR SDRAM
chips.

Several commercial NPUs follow a hybrid approach targeting the acceler-
ation of memory management implementations by utilizing specialized hard-
ware units that assist specific memory access operations, without providing
a complete queue management implementation. The first generation of the
Intel NPU family, the IXP1200, initially provided an enhanced SDRAM unit,
which supported single byte, word, and long-word write capabilities using a
read-modify-write technique and may reorder SDRAM accesses for best per-
formance (the benefits of this will also be explored in the following section).
The SRAM Unit of the IXP1200 also includes an 8-entry push/pop register
list for fast queue operations. Although these hardware enhancements im-
prove the performance of typical queue management implementations they
cannot keep in pace with the requirements of high-speed networks. Therefore
the next generation IXP-2400 provides high-performance queue management
hardware that automates adding data to and removing data from queues [40].
Following the same approach the PowerNP NP4GS3 incorporates dedicated
hardware acceleration for cell enqueue/dequeue operations in order to man-
age packet queues [3]. The C-Port/Motorola C-5 NPU also provided mem-
ory management acceleration hardware [6], still not adequate though to cope
with demanding applications that require frequent access to packet queues.
The next-generation Q-5 Traffic Management Coprocessor provided dedicated

Embedded Multi-Core Processing for Networking 433

hardware designed to support traffic management for up to 128K queues at
a rate of 2.5 Gbps [18]. In the rest of this section we review the most impor-
tant performance requirements evaluating a set of alternative implementations
that dictate the basic design choices when assigning specific tasks to embedded
engines in a multi-core NPU implementation.

12.5.1 Performance Issues
12.5.1.1 External DRAM Memory Bottlenecks

A crucial design decision at such high rates is the choice of the buffer memory
technology. Static random access memory (SRAM) provides high throughput
but limited capacity, while DRAM offers comparable throughput and signif-
icantly higher capacity per unit cost; thus, DRAM is the prevalent choice
among all NPUs for implementing large packet buffering structures. Further-
more, among DRAM technologies, DDR, SDRAM is becoming very popular
because of its high performance and affordable price. DDR technology can pro-
vide 12.8 Gbps peak throughput by using a 64-bit data bus at 100 MHz with
double clocking (i.e., 200 Mbps/pin). A DIMM module provides up to 2 GB to-
tal capacity and it is organized into four or eight banks to provide interleaving
(i.e., to allow multiple parallel accesses). However, due to bank-pre-charging
periods (during which the bank is characterized as busy) successive accesses
must respect specific timing requirements. Thus, a new read/write access to
64-byte data blocks to the same bank can be inserted every four clock-cycles,
i.e., every 160 ns (with an access cycle of 40 ns). When a memory transaction
tries to access a currently busy bank, we say that a bank conflict has occurred.
This conflict causes the new transaction to be delayed until the bank becomes
available, thus reducing memory utilization. In addition, interleaved read and
write accesses also cause loss to memory utilization because they create dif-
ferent access delays. Thus, while the write access delay can be as low as 40 ns
and the read access delay 60 ns, when write accesses occur after read accesses,
the write access must be delayed by one access cycle.

It is worth demonstrating the impact of the above implications in DDR-
DRAM performance in the overall aggregate throughput that can be provided
under usual access patterns following the methodology presented in [36]. The
authors in [36] simulated a behavioral model of a DDR-SDRAM memory under
a random access pattern and estimated the impacts of bank conflicts and read-
write interleaving on memory utilization. The results of this simulation for a
range of available memory banks (1 to 16) are presented in the two left columns
of Table 12.1.

The access requests assume aggregate accesses from two write and two
read ports (a write and a read port from/to the network, a write and a read
port from/to the internal processing element (PE) array). By serializing the
accesses from the four ports in a simple/round-robin order (i.e., without opti-
mization) the throughput loss presented in Table 12.1 is achieved. However, by

434 Multi-Core Embedded Systems

TABLE 12.1: DDR-DRAM Throughput Loss Using 1 to 16 Banks

No Optimization Optimization
Throughput Loss Throughput Loss
Banks | Bank conflicts | Bank conflicts 4+ | Bank conflicts | Bank conflicts +
write-read write-read
interleaving interleaving
1 0.750 0.75 0.750 0.750
2 0.647 0.66 0.552 0.660
3 0.577 0.598 0.390 0.432
4 0.522 0.5 0.260 0.331
5 0.478 0.48 0.170 0.290
6 0.442 0.46 0.100 0.243
7 0.410 0.42 0.080 0.220
8 0.384 0.39 0.046 0.199
9 0.360 0.376 0.032 0.185
10 0.338 0.367 0.022 0.172
11 0.321 0.353 0.018 0.165
12 0.305 0.347 0.012 0.159
13 0.289 0.335 0.010 0.153
14 0.275 0.33 0.007 0.148
15 0.264 0.32 0.004 0.143
16 0.253 0.317 0.003 0.139

scheduling the accesses of these four ports in a more efficient manner, a lower
throughput loss is achieved since a reduction in bank conflicts is possible. A
simple way to do this is to effectively reorder the accesses of the four ports to
minimize bank conflicts. The information for bank availability in order to ap-
propriately schedule accesses is achieved by keeping the memory access history
(i.e., storing the last three accesses). In case that more than one accesses are
eligible (belong to a non-busy bank), the scheduler selects one of the eligible
accesses in round-robin order. If no pending access is eligible, then the sched-
uler sends a no-operation to the memory, losing an access cycle. The results
of this optimization are presented in the right side of Table 12.1. Assuming
organization of eight banks, the optimized scheme reduces throughput loss by
50 percent with respect to the un-optimized scheme. Thus, it is evident that
only a percentage of the nominal 12.8 Gbps peak throughput of a 64-bit/100
MHz DDR-DRAM can be utilized and the design of the memory controller
must be an integral part of the memory management solution.

12.5.1.2 Evaluation of Queue Management Functions: INTEL
IXP1200 Case

As described above, the most straightforward implementation of memory man-
agement in NPUs is based on software executed by one or more on-chip micro-
processors. Apart from the memory bandwidth that was examined in isolation

Embedded Multi-Core Processing for Networking 435

in the previous section, a significant factor that affects the overall performance
of a queue management implementation is the combination of the processing
and communication latency (communication with the peripheral memories
and memory controllers) of the queue handling engine (either generic processor
or fixed/configurable hardware) and the memory response latency. Therefore
the overall actual performance can only be evaluated at system level. Using
Intel’s IXP1200 as an example representing a typical NPU architecture, the
authors in [36] have also presented results regarding the maximum throughput
that can be achieved when implementing memory management in IXP1200
software.

The IXP1200 consists of six simple RISC processing microengines [28]
running at 200 MHz. According to [36], when porting the queue management
software to the IXP RISC-engines, special care should be given so as to take
advantage of the local cache memory (called scratch memory) as much as pos-
sible. This is because any accesses to the external memories use a very large
number of clock cycles. One can argue that using the multi-threading capabil-
ity of the IXP can hide this memory latency. However, as it was proved in [48],
the overhead for the context switch, in the case of multi-threading, exceeds
the memory latency and thus this IXP feature cannot increase the perfor-
mance of the memory management system when external memories should
be accessed. Even by using a very small number of queues (i.e., fewer than
16), so as to keep every piece of information in the local cache and in the
IXPs registers, each microengine cannot service more than 1 million packets
per second (Mpps). In other words, the whole of the IXP cannot process more
than 6 Mpps. Moreover, if 128 queues are needed, and thus external mem-
ory accesses are necessary, each microengine can process at most 400 Kpps.
Finally, for 1K queues the peak bandwidth that can be serviced by all six
IXP microengines is about 300 Kpps [40]. The above throughput results are
summarized in Table 12.2.

TABLE 12.2: Maximum Rate Serviced When Queue Management Runs on
IXP 1200

No. of Queues | 1 Microengine | 6 Microengines
16 956 Kpps 5.6 Mpps
128 390 Kpps 2.3 Mpps
1024 60 Kpps 0.3 Mpps

12.5.2 Design of Specialized Core for Implementation of
Queue Management in Hardware

Due to the performance limitations identified above, the only choice to achieve
very high capacity (mainly in NPUs targeting core network systems and high-
speed networking applications) is to implement dedicated embedded cores to

436 Multi-Core Embedded Systems

offload the other PEs from queue management tasks. Such cores are imple-
mented either as fixed hardware engines, designed specifically to accelerate the
task of packet buffering and per-flow queuing, or as programmable HW cores
with limited programmability extending to a range of operations indexed by
means of an OPCODE that can be executed. In the remainder of this section
we present the micro-architecture and performance details of such a specifi-
cally designed engine (originally presented in [36]) designed as a task-specific
embedded core for NPUs supporting most of the requirements for queue and
buffer management applications. The maintenance of queues of packets per
flow in the design presented in [36] is undertaken by a dedicated data mem-
ory management controller (called DMM) designed to efficiently support per
flow queuing, providing tens of gigabits per second throughput to an external
buffer based on DDR-DRAM technology and many complex operations on
these packet queues. The classification of packets into flows is considered part
of the protocol processing accomplished prior to packet buffering by a spe-
cific processing module denoted as packet classifier. The overall sub-system
architecture considered in [36] for packet classification, per-flow queuing and
scheduling is shown in Figure 12.19.

Processing
Elements (PEs)

Queue Table Packet Segment Data

Pointers Pointers Segment
Head Tail

Scheduler

y
Command

[=>| Forwarding

Shaper

Flow Data Memoera}'\;ger
Classifier]) (DMIM)

-

-

....... 1
Pointer Packet
Memory Memory

FIGURE 12.19: Packet buffer manager on a system-on-chip architecture.

The main function of the DMM is to store the incoming traffic to the data
memory, retrieve parts of the stored packets and forward them to the internal
processing elements (PEs) for protocol processing. The DMM is also respon-
sible to forward the stored traffic to the output, based on a programmable
traffic-shaping pattern. The specific design reported in [36] supports two in-
coming and two outgoing data paths at 2.5 Gbps line rate each; there is one
for receiving traffic from the network (input), one for transmitting traffic to
the network (output), and one bi-directional for receiving and sending traffic
from/to the internal bus. It performs per flow queuing for up to 512K flows.

Embedded Multi-Core Processing for Networking 437

The DMM operates both at fixed length or variable length data items. It uses
DRAM for data storage and SRAM for segment and packet pointers. Thus, all
manipulations of data structures occur in parallel with data transfers, keep-
ing DRAM accesses to a minimum. The architecture of the DMM is shown in
Figure 12.20. It consists of five main blocks: the data queue manager (DQM),
data memory controller (DMC), internal scheduler, segmentation block and
reassembly block. Each block is designed in a pipeline fashion to exploit par-
allelism and increase performance. In order to achieve efficient memory man-
agement in hardware, the incoming data items are partitioned into fixed size
segments of 64 bytes each. Then, the segmented packets are stored in the data
memory, which is segment aligned. Segmentation and reassembly blocks per-
form this function. The internal scheduler forwards the incoming commands
from the four ports to the DQM, giving different service priorities to each
port. The data queue manager organizes the incoming packets into queues.
It handles and updates the data structures, kept in the pointer memory. The
data memory controller performs the low level read and writes to the data
memory minimizing bank conflicts in order to maximize DRAM throughput
as described below.

PE PE . PE
(Processing Element) (Processing Element) (Processing Element)

b

Scheduling Units

Packet
Classifi

Data

Memory
Manager Internal Scheduler
(DMM)

Data Queue Manager
IN < q
l—. Data Memory
Controller

DDR-SDRAM ZBT-SRAM
256Mbyte 32Mbyte

ouT

FIGURE 12.20: DMM architecture.

The DMM reported in [36] provides a set of commands in order to support
the diverse protocol processing requirements of any device handling queues.
Beyond the primitive commands of “enqueue” and “dequeue”, the DMM fea-
tures a large set of 18 commands to perform various manipulations on its data
structures (a list of the commands is given in Table 12.3 in Section 12.5.2.2

438 Multi-Core Embedded Systems

along with the performance measured for the execution of these commands).
Thus it can be incorporated in any embedded system that should handle
queues.

DDR-DRAM has been chosen for the data memory because it provides
adequate throughput and large storage space for the 512K supported queues,
at a low cost as already discussed above. The DDR-SDRAM module used has
a 64-pin data bus, which runs at 133 MHz clock frequency, providing 17.024
Gbps total throughput. The large number of the required pointer memory
accesses requires a high throughput low latency pointer memory. SRAM has
been selected as pointer memory, which provides the required performance.
Typical SRAMs working at 133 MHz clock frequency provide 133M accesses
per second or about 8.5 Gb/sec.

The data memory space is organized into fixed-size buffers (named seg-
ments), which is a usual technique in all memory management implementa-
tions. The length of segments is set to 64 bytes because this size minimizes
fragmentation loss. For each segment, in the data memory, a segment pointer
and a packet pointer are assigned. The addresses of the data segments and the
corresponding pointers are aligned, as shown in Figure 12.19, in the sense that
a data segment is indexed by the same address as its corresponding pointer.
For example, the packet and segment pointers of the segment 0 are in the
address 0 in the pointer memory.

The data queues are maintained as single-linked lists of segments that
can be traversed from head to tail. Thus, head and tail pointers are stored
per queue on a queue table. Head pointers point to the first segment of the
head packet in the queue, while the tail pointer indicates the first segment of
the tail packet. The DMM can handle traffic at variable length objects (i.e.,
packets) as well as at fixed-size data items. This is achieved by using two
linked lists per flow: one per segment and one per packet. Each entry in the
segment level list stores the pointer that indicates the next entry in the list.
The maximum number of entries within a data queue equals the maximum
number of segments the data memory supports. The packet pointer field has
the valid bit set only in the entry that corresponds to the first segment of a
packet. The packet pointer also indicates the address of the last segment of
a packet. The number of entries of the packet lists is lower than the number
of entries of the corresponding segment lists in a typical situation. However,
in the worst case the maximum number of entries in the packet level lists is
equal to the number of segment level lists, which equals the maximum number
of the supported segments in the data memory.

Supporting two types of queues (packet, segment) requires two free lists,
one per type. This results in double accesses for allocating and releasing point-
ers. The above flexible data structures, minimize memory accesses and can
support the worst-case scenarios. The two types of linked lists are identical
and aligned. In other words, there is only one linked list with two fields: seg-
ment and packet pointers. Segment pointers indicate the next segment in the
list.

Embedded Multi-Core Processing for Networking 439

12.5.2.1 Optimization Techniques

The following subsections describe the optimization techniques used in the
design to increase performance and reduce the cost of the system.

e Free List Organization. The DRAM provides high throughput and
capacity at the cost of high latency and throughput limitations due to
bank conflicts. A bank conflict occurs when successive accesses address
the same bank, and in such case the second access must be delayed until
the bank is available Bank conflicts reduce data memory throughput
utilization. Hence, special care must be given to the buffer allocation
and deallocation process. In [18] there is a proof of how, by using a single
free list, a user can minimize the memory accesses during buffer releasing
(i.e., delete or dequeue of a large size packet requires O(1) accesses to
the pointer memory). However, this scheme increases the possibility of a
bank conflict during an enqueue operation. On the other hand, using one
free list per memory bank (total of eight banks in the current DRAM
chips) minimizes or even avoids bank conflicts during enqueueing but
increases the number of memory accesses during packet dequeueing-
deletion to O(N). A trade-off of these two schemes, which minimizes
the memory accesses and bank conflicts, is to use two free lists and
allocate buffers for packet storing from the same free list. Additionally,
the support of page-based addresses on the DRAM results in reduction
up to 70 percent in the number of bank conflicts during writes and 46
percent during reads.

e Memory Access Reordering. The execution of an incoming opera-
tion, such as enqueue, dequeue, delete or append packet, sends read and
write commands to the pointer memory to update the corresponding
data structures. Successive accesses may be dependent. Due to access
dependencies, the latency to execute an operation is increased. By re-
ordering the accesses in an effective manner, the execution latency is
minimized and thus the system performance increased. This reorder-
ing is performed for every operation and was measured to achieve a 30
percent reduction in the access latency.

e Memory Access Arbitration. Using the described free list organiza-
tion, the write accesses to the data memory can be controlled to min-
imize the bank conflicts. Similar control cannot be performed to read
accesses because they are random and unpredictable. Thus, a special
memory access arbiter is used in the data memory controller block to
shape the flow of read and write accesses to avoid bank conflicts. Memory
accesses are classified in four FIFOs (one FIFO per port). The arbiter
implements a round-robin policy. It selects an access only if it belongs
to a non-busy bank. The information for bank availability is achieved
by keeping the data memory access history (last three accesses). This

440 Multi-Core Embedded Systems

function can reduce bank conflicts by 23 percent. It also reduces the
hardware complexity of the DDR memory controller.

e Internal Backpressure. The data memory manager uses internal
backpressure to delay incoming operations that correspond to blocked
flows or blocked devices. The DMM keeps data FIFOs per output port.
As soon as these FIFOs are about to overflow, alarm backpressure signals
are asserted to suspend the flow of incoming operations related to this
blocked datapath. Internal backpressure avoids overflows and data loss.
This technique achieves DDM engine architecture reliability by using
simple hardware.

12.5.2.2 Performance Evaluation of Hardware Queue
Management Engine

Experiments on the DMM design were performed with the support of software
and micro-code specifically developed for an IP packet filtering application
executed on the embedded micro-engines of the PRO3 NPU presented in [37].

TABLE 12.3: Packet Command and Segment Command Pointer Manipulation

Latency
Packet Segment Command Clock | Pointer Memory
Command Cycles Accesses
(5 ns) | r: Read; w: Write
Enqueue Enqueue 10 4drdw
Read Read 10 3r
Dequeue Read_N 10 3r
Append Dequeue_ N 13 Min 5 (3r2w)
Max 8 (3rbw)
Ignore Overwrite 10 3r
Delete Overwrite_Segment_length 7 2rlw
Ignore+Delete Dequeue 13 Min 5 (3r2w)
Max 8 (3rbw)
Ignore 4 0
Ignore+Overwrite_Segment_length 7 2rlw
Overwrite_Segment_length+Append 11 6rdw
Overwrite_Segment+Append 11 6r3w

In Table 12.3, the commands supported by the DMM engine are listed.
Note that the packet commands are internally translated into segment com-
mands and only segment commands are executed at the low level controller.
Table 12.3 also shows the measured latency of these commands when execut-
ing the pointer manipulation functions. The actual data access at the data
memory can be done almost in parallel with the pointer handling. In partic-
ular, the data access can start after the first pointer memory access of each

Embedded Multi-Core Processing for Networking 441

command has been completed. This is achieved because the pointer memory
accesses of each command have been scheduled so that the first one provides
the data memory address. Hence, DMM can always handle a queue instruc-
tion within 65 ns. Since the data memory is accessed at about 50-60 ns (at
the average case), and the major part of the queue handling is done in parallel
with the data access, the above DMM engine introduces a minimum latency
on the whole system. In other words, in terms of latency, you get the queue
handling almost “for free”, since the DMM latency is about the same as that
of a typical (support only read and write) DRAM subsystem.

Table 12.4 depicts the performance results measured after stressing the
DMM with real TCP traffic plugged to the NPU ingress interface (supporting
one 2.5 Gbps ingress and one 2.5 Gbps egress interface). This table demon-
strates the performance of the DMM in terms of both bandwidth and number
of instructions serviced. It also presents the memory bandwidth required by
our design to provide the performance specified.

TABLE 12.4: Performance of DMM

Number of | AVG packet | MOperations/s | Pointer Memory DMM
Flows size (bytes) serviced BW (Gb/s) BW (Gb/s)

2 100 8.22 4.53 7.60

2 90 10.08 4.45 9.72

2 128 11.26 4.40 9.20

4 128 10.05 3.70 8.40

4 128 9.44 3.80 9.20

Single 64 10.47 2.68 5.32

Single 64 13.70 3.74 7.04

Single 64 15.43 4.50 9.52

Single 50 13.43 4.42 6.88

Since the DMM in the case of the above 2.5 Gbps NPU should actually
service each packet four times, the maximum aggregate throughput serviced
by it is 10 Gb/sec. From the results of Table 12.4 it can easily be derived
that the worst case is when there is only one incoming flow, which consists of
very small packets. This worst case can still be served by the DMM engine
operating at 200 Mhz while at the same time having a very large number
of idle cycles (more than 25 percent even in the worst case). As described
above, a simple DRAM can provide up to 17 Gb/sec of real bandwidth while
the SRAM up to 8.5 Gb/sec. The maximum memory bandwidth utilization
figures show that even in the worst case scenario the bandwidth required by
the DRAM is up to about 14 Gb/sec (equal to the DMM bandwidth plus the
measured 37 percent overhead due to bank conflicts and fragmentation) and
that of the SRAM is 4.5 Gb/sec. As the internal hardware of the DMM in any
of these cases is idle for more than 30 percent of the time, the specific DMM
engine design could provide even a sustained bandwidth of 12 Gb/sec.

442 Multi-Core Embedded Systems

12.6 Scheduling Engines

Scheduling in general is the task of regulating the start and end times of
events that contend for the same resource, which is shared in a time division
multiplexing (TDM) fashion. Process scheduling is found as a major function
of operating systems that control multi-threaded/multiprocessing computer
systems ([31], [16], [5]. Packet scheduling is found in modern data networks as
a means of guaranteeing the timely delivery of data with strict delay require-
ments, hence guaranteeing acceptable QoS to real-time applications and fair
distribution of link resources among flows and users. Scheduling in a network
processor environment is required either to resolve contention for processing
resources in a fair manner (task scheduling), or to distribute in time the trans-
mission of packets/cells (in a network medium) due to traffic management
rules (traffic scheduling and/or shaping).

Although electronic technology advances rapidly, all of the NPU architec-
tures discussed above are able to perform protocol processing at wire speed
only on a long observation window, imposing buffering needs prior to pro-
cessing. In the context of network processing described in this chapter, when
applying complex processing at the processing elements (PEs), a long latency
is inadvertently introduced. In order to efficiently utilize the processing capa-
bilities of the node without causing QoS deterioration to packets from critical
applications, an efficient queuing and scheduling mechanism (we will use the
term task scheduling hereafter) for the regulation of the sequence of events
related to the processing of the buffered packets is required. An additional im-
plication stems from the multiprocessing architectures, which are most times
employed to achieve the required performance that cannot be achieved by
a single processing unit. This introduces an additional consideration in the
scheduler design with respect to the maintenance of coherent protocol pro-
cessing to cope with pipelined or parallel processing techniques, which are
also very common.

In the outgoing path of the dataflow through the network processing ele-
ments, the transmission profile of the traffic leaving the nodes needs appropri-
ate shaping, to achieve the expected delay and jitter levels. Since the internal
scheduling and processing may have altered the temporal traffic properties
(i.e., delaying some packets more than others, causing the so-called jitter or
burstiness in the traffic profile), or because an application requirement to im-
plement rate control for ingress traffic by a traffic scheduler or shaper appro-
priately adjusting the temporal profile of packet transmission (called hereafter
traffic scheduler) is imposed.

Embedded Multi-Core Processing for Networking 443

12.6.1 Data Structures in Scheduling Architectures

In this section we will describe the basic building blocks of scheduling enti-
ties able to support both fixed and variable size packets, and to operate at
high speeds, consuming few hardware resources. Such functional entities are
frequently found as specialized micro-engines in several NPU architectures, or
can be the basic functional elements of specialized NPUs designed to imple-
ment complex scheduling of packets across many thousands of packet flows
and across many network ports.

The algorithmic complexity of proportionate time sharing solutions is
based on per-packet time interval calculations and marking/time-stamping.
Such algorithms are applicable only for scheduling tasks that have a predeter-
mined completion time and increased complexity. Many studies have focused
on analyzing the trade-offs between accurate implementation of algorithms
theoretically shown to achieve fair scheduling among flows and simplified
time representation and computations along with aggregate traffic handling
to reduce memory requirements related to the handling of many thousands of
queues. The simplest scheme for service differentiation is based on serving in
simple FIFO order flows, classified based on the destination and/or priority
of the corresponding traffic. This service discipline can be applied to traffic
with different destinations (output ports or processing units), through the
instatiation of multiple FIFOs, to avoid head of line (HOL) blocking.

A frequently employed technique that can reduce complexity and increase
the throughput of the scheduler implementation with insignificant perfor-
mance degradation is the grouping of flows with similar requirements into
scheduling queues (SQ). Therefore, while a large number of actual data queues
(DQs) can be managed by the queue manager, only a limited number of SQs
need to be managed by the scheduler, greatly reducing memory requirements.
In the simplest case such grouping can be used to implement a strict prioritized
service, i.e., highest priority FIFOs are always serviced first until they become
empty. This may also lead to starvation of lower priority queues. In order to
avoid the starvation problem, queues need to be served in a cyclic fashion. In
the simplest case flows within the same priority group are serviced in round-
robin (RR) fashion as in [21]. A more general extension of the above approach
results in a weighted round-robin service among NS flow groups (SQs) with
proportional service (possibly extended in hierarchical hybrid schemes, e.g.,
implementing strict priorities between super groups): In this case the flows of
the same priority are grouped in NS queues, which are served in a weighted
round-robin manner, following an organization similar to that described in
[42].

The rationale beyond grouping is to save and move implementation re-
sources from detailed flow information to more elaborate resource allocation
mechanisms and to improve overall performance applying the proper classi-
fication scheme. Assuming that an information entry is kept per schedulable
entity, grouping a number of NF flows to a number NS of scheduling queues,

444 Multi-Core Embedded Systems

a (NF-NS) reduction in storage requirements is achieved. The economy on
memory resources regarding the number of pointers is significant since only
2* NS pointers for the management of the NS priority queues are required
(and can be stored on-chip), plus NF next (flow) pointers. Flows are grouped
to scheduling queues according to some classification rule which depends on
the application/configuration. Although the mapping of flows to scheduling
queues requires some information maintenance, it requires much less than the
size of saved information. Apart from the memory space requirement reduc-
tion, reducing the number of schedulable entities facilitates a high decision
rate in general, which proves to be mandatory for high-speed network appli-
cations.

12.6.2 Task Scheduling

In NPUs, the datapath through the system originates at the network interface,
where packets are received and buffered in the input queue. Considering a
parallel implementation of multiple processing elements (PEs) the role of the
task scheduler is to assign a packet to each of the PEs whenever one of them
becomes idle, after verifying that the packet/flow is eligible for service. This
latter eligibility check of a packet from a specific flow before forwarding to a
processor core (PE) is mandatory in order to maintain the so-called processor
consistency. A multiprocessor is said to be processor consistent if the result
of any execution is the same as if the operations of each individual processor
appear in the sequential order specified by its program. To do this effectively,
the scheduler can pick any of the packets in the selection buffer, cross-checking
a state table indicating the availability of PEs as well as potential state-
dependencies of a specific flow (e.g., packets from the same flow may not be
forwarded to an idle processor if another packet is already under processing
in one of the PEs in order to avoid state dependencies). A packet removed
from the selection buffer for processing is replaced by the next packet from
the input queue. Processed packets are placed into an output queue and sent
to the outgoing link or the switch fabric of a router.

Hardware structures for the efficient support of load balancing of traffic in
such multiprocessor SoCs in very high speed applications have appeared only
recently. The assumptions and application requirements in these cases differ
significantly from the processing requirements and programming models of
high-speed network processing systems. NPUs represent a typical multipro-
cessing system where parallel processing calls for efficient internal resource
management. However, the network processor architectures usually follow the
run-to-completion mode, distributing processing tasks (which actually repre-
sent packet and protocol processing functions) on multiple embedded process-
ing cores, rather than following complex thread parallelism. Load balancing
has also been studied in [22]. The analysis included in [22] followed the assump-
tion of multiple network processors operating in parallel with no communica-
tion and state sharing capabilities between them, as well as the requirement to

Embedded Multi-Core Processing for Networking 445

minimize re-assignments of flows to different units for this reason as well as to
avoid packet reordering. These assumptions are relaxed when the processing
units are embedded on a single system-on-chip and access to shared memories
as well as communication and state locking mechanisms are feasible. Current
approaches for processor sharing in commercial NPUs are discussed below.

The IBM PowerNP NP4GS3 [3] includes eight dyadic protocol processing
units (DPPUs) and each one contains two core language processors (CLPs).
Sixteen threads at most can be active, even though each DPPU can support up
to four processes. The dispatch event controller (DEC) schedules the dispatch
of work to a thread, and is able to load balance threads on the available
DPPUs and CLPs, while a completion unit detects their state and maintains
frame order within communication flows. However, it can process 4.5 million
packets per second layer 2 and layer 3 switching, while operating at 133 MHz.

The IXP 2800 network processor [19] embeds 16 programmable multi-
threaded micro-engines that utilize super-pipeline technology that allows the
forwarding of data items between neighboring micro-engines. Hence, the pro-
cessing is based on a high-speed pipeline mechanism rather than on associating
one micro-engine to the processing of a full packet (although this latter case
is possible via its local dispatchers).

The Porthos network processor [32] uses 256 threads in 8 processing en-
gines. In this case, in-order packet processing is controlled mainly by software,
and it is assisted by a hardware mechanism which tags each packet with a se-
quence number. However, load balancing capability is limited and completely
controlled by software.

12.6.2.1 Load Balancing

An example of such an on-chip core has been presented in [25]. The sched-
uler/load balancer presented in [25] is designed to allocate the processing re-
sources to the different packet flows in a fair (i.e., weighted) manner according
to pre-configured priorities/weights, whereas the load balancing mechanism
supports efficient dispatching of the scheduled packets to the appropriate des-
tination among a set of embedded PEs. The main datapath of the NPU in this
case is the one examined in previous chapters and is shown in Figure 12.21.
This set of PEs shown in Figure 12.21 may be considered to be of similar
capacity and characteristics (so effectively there is only one set) or may be
differentiated to independent sets. In any case each flow is assigned to such
a set. A load-balancing algorithm is essential to evenly distribute packets to
all the processing modules. The main goal for the load balancing algorithm is
that the workloads of all the processing elements are balanced and throughput
degradation is prevented. Implementation of load balancing in this scheme is
done in two steps. First, based on the results of the classification stage, packet
flows undergoing the same processing (e.g., packets from similar interfaces
using the same framing and protocol stacks and enabled services use a pre-
defined set of dedicated queues) are distributed among several queues, which

446 Multi-Core Embedded Systems

Scheduling
CcPU PE,, PE,, ... PE commands Memory

[1 1L

Task Management iff Command |_ Linked List
i Scheduler Dispatcher | — Manager
I PE, “ PE, J l PE, J l 7 T
]/ ," Service Q Manager
S OUT manager
m m U 9 head il |weight] ot | [0l

head tail |weight] ot | L]
head tail weight| ctrl I—I

| head | tail |weight| ctrl ||_|

destination

Flow || Data Memory Manager "
@jv Classifier [(DMM) JouT

Pointer Packet
Memory Memory

Scheduling
Memory

FIGURE 12.21: Details of internal task scheduler of NPU architecture
described in [25].

represent the set of internal flows that are eligible for parallel processing. In
the second step, the task scheduler based on the information regarding the
traffic load of these queues (i.e., packet arrival events) selects and forwards
packets based on an appropriate service policy. The application software that
is executed by a PE on a given packet is implicitly defined by the flow/queue
to which the packet belongs.

Pre-scheduled flows are load-balanced to the available PEs by means of a
strict service mechanism. The scheme described in [25] is based on the imple-
mentation of an aging mechanism used in the core of a crossbar switch fabric
(this on-chip interconnection architecture is usually called network-on-chip,
NoC). The reference crossbar switch used is based on a traditional implemen-
tation of a shared-memory switch core; all target ports corresponding to a
programmable processing core (PE) access this common resource with the aid
of a simple arbitrating mechanism.

A block diagram of the load-balancing core described in [25] is shown in
Figure 12.22. The main hardware data structures used (assuming 64 available
on-chip PEs and 1M flows) are the following:

e The free list maintains the occupancy status of the rest tables; any PE
may select any waiting flow residing in the flow memory.

e The FLOW memory records the flow identifier of a packet waiting to be
processed.

e The DEST memory stores a mask denoting the PEs that can process
this packet (i.e., can execute the required application code).

e The AGE memory stores the virtual time (in the form of a bit vector)

Embedded Multi-Core Processing for Networking 447

based on the arrival time of this packet (it is called virtual, because it
represents the relative order among the scheduled flows).

ﬂ {FlowIn, DestIn}
= EN ~
Free Priority = T N Time Pointer
List Enforcer Encoder FLOW ¥ DEST ¥ AGE —— 5+
e——20— — 16— —064
Di Di 1Addr
_________ o BRI | S|
Addr Addr Di '
vvvvvvvvvvv 64 - '
DPSRAM SIfrmimrmrmprmimm o -]5-—--!-—-}-—-»
rd ' wr SDi '_:_
W Do SDi SMi Loy Do
fwr o owrite =
ird :read ‘—D" - JI ,,,,3
isro o search ar
isho:shift ﬂ thermo vec
en :encode P{lflljo gOut, PPU en
Lar :arbitrate rant} Freeln

FIGURE 12.22: Load balancing core implementation [25].

Two pipeline operations are executed in parallel for incoming packets and
packets that have completed processing at the PEs. The in pipeline is triggered
if no PE service is in progress. It is responsible to store the flow identifier in an
available slot provided by the free list, and mark the corresponding destination
mask in the DEST table. The virtual time indicator is updated and stored in
the AGE table, aligned with the flow identifier and the destination mask, which
is used to guarantee service according to the arrival times of the requests.
Finally, a filter/aggregation mask is updated to indicate the PEs needed to
serve the waiting flows. After applying the filter mask to the PE availability
vector indicator, the DEST table is searched to discover the flows scheduled to
this PE. This is a “don’t care” search, since the matching flows could be load-
balanced to other PEs as well. In order to serve the oldest flow, the AGE table
is searched in the next stage, based on the previous outcome. The outcome
of this searching is: a) to read the AGE table and produce the winner flow to
be served, and b) to shift all the younger flows to the right and automatically
erase the age of the winner. The flow memory is read after encoding the
previous outcome, and finally, the free list and DEST tables are updated
accordingly. The basic structures used include multi-ported memories, priority
enforcers, a content addressable memory (CAM) that allows ternary search
operations (for the implementation of the DEST table). The most complex
data structure is the AGE block. This is also a CAM, which differs in that it
performs exact matches. Additionally, it has a separate read/write port and
supports a special shift operation; it shifts each column vector to the right
when indicated by a one in a supplied external mask. The circuit thermo vec

" In Pipeline

iOut Pipeline

448 Multi-Core Embedded Systems

performs a thermometer decoding. It transforms the winner vector produced
by the priority enforcer to a sequence of ones from the located bit position
until the left most significant bit. This is “ANDed” with the virtual time
vector to produce the shift enable vector. Thus, only the active columns are
shifted.

The concept of operation described above is also similarly found in the
case of the Porthos NPU ([32]) which uses 256 threads in eight PEs (called
tribes in [32]). In this case, in-order packet processing is controlled mainly
by software, and it is assisted by a hardware mechanism which tags each
packet with a sequence number. However, load balancing capability is limited
and completely controlled by software. The hardware resources supporting
this functionality are based on the interconnection architecture of the Porthos
NPU shown in Figure 12.23.

= Network =
(] (]
g 3 PE1 Interface ! PES S 3
-~ O & -~ O
< Packet 2
Buffer
5 5
c c
53| PE2 N PE7 |33
3 Cr?ls:sl:bar)
c % Event c %
3 3| PE3 Handler PE6 |3 3
< <
% Global Unit %
S3| Pea- & L PEs |53
= 0 Hypertransport = 0
< I/ <

FIGURE 12.23: The Porthos NPU interconnection architecture [32].

The Porthos interconnect block consists of three modules: event handling,
arbiter and crossbar (comprising 10 input and 8 output 64-bit wide ports sup-
porting backpressure for busy destinations). The event module collects event
information and activates a new task to process the event. It spawns a new
packet processing task in one of the PEs via the interconnect logic based on
external and timer (maskable) interrupts. There are two (configurable) meth-
ods to which an interrupt can be directed. In the first method, the interrupt
is directed to any PE that is not empty. This is accomplished by the event
module making requests to all eight destination PEs. When there is a grant
to one PE, the event module stops making requests to the other PEs and

Embedded Multi-Core Processing for Networking 449

starts the interrupt handling process. In the second method, the interrupt is
directed to a particular PE.

The arbiter module performs arbitration between sources (PEs, network
block, event handling module and transient buffers) and destinations. The
arbiter needs to match the source to the destination in such a way as to max-
imize utilization of the interconnect, while also preventing starvation using a
round-robin prioritizing scheme. This matching is performed in two stages.
The first stage selects one non-busy source for a given non-busy destination.
The second stage resolves cases where the same source was selected for multi-
ple destinations. The arbitration scheme implemented in Porthos is “greedy”,
meaning it attempts to pick the requests that can proceed, skipping over
sources and destinations that are busy. In other words, when a connection
is set up between a source and a destination, the source and destination are
locked out from later arbitration. With this scheme, there are cases when the
arbiter starves certain contexts. It could happen that two repeated requests,
with overlapping transaction times, can prevent other requests from being pro-
cessed. To prevent this, the arbitration may operate in an alternative mode. In
the non-greedy mode for each request that cannot proceed, there is a counter
that keeps track of the number of times that request has been skipped. When
the counter reaches a configurable threshold, the arbitration will not skip over
this request, but rather wait at the request until the source and destination
become available. If multiple requests reach this priority for the same source or
destination, one-by-one they will be allowed to proceed in a strict round-robin
fashion.

An architectural characteristic of the Porthos NPU is the support for the
so-called task migration from one PE to another, i.e., a thread executing on a
PE transferred to another. When migration occurs, a variable amount of con-
text follows the thread. Specific thread migration instructions are supported
specifying a register that contains the destination address and an immediate
response that contains the amount of thread context to preserve. Thread mi-
gration is a key feature of Porthos, providing support to the overall loosely
coupled processor/memory architecture. Since the memory map is not over-
lapped, every thread running in each PE has access to all memory. Thus,
from the standpoint of software correctness, migration is not strictly required.
However, the ability to move the context and the processing to an engine
that is closer to the state that the processing is operating on allows a flexible
topology to be implemented. A given packet may do all of its processing in
a specific PE, or may follow a sequence of PEs (this decision potentially is
made on a packet-by-packet basis). Since a deadlock can occur when the PEs
in migration loops are all full, Porthos uses two transient buffers in the in-
terconnect block to break such deadlocks, with each buffer capable of storing
an entire migration (66 bits times maximum migration cycles). These buffers
can be used to transfer a migration until the deadlock is resolved by means of
atomic software operations at a cost of an additional delay.

450 Multi-Core Embedded Systems

12.6.3 Traffic Scheduling

The Internet and the associated TCP /IP protocols were initially designed to
provide best-effort (BE) service to end users and do not make any service
quality commitment. However, most multimedia applications are sensitive to
available bandwidth and delay experienced in the network. To satisfy these
requirements, two frameworks have been proposed by IETF: the integrated
services (IntServ), and the differentiated services (DiffServ) [47], [26]. The
IntServ model provides per-flow QoS guarantee and RSVP (resource reser-
vation protocol) is suggested for resource allocation and admission control.
However, the processing load is too heavy for backbone routers to maintain
state of thousands of flows. DiffServ is designed to scale to large networks and
gives a class-based solution to support relative QoS. The main idea of Diff-
Serv is to minimize state and per-flow information in core routers by placing
all packets in fairly broad classes at the edge of network. The key ideas of
DiffServ are to: (a) classify traffic at the boundaries of a network, and (b)
condition this traffic at the boundaries. Core devices perform differentiated
aggregate treatment of these classes based on the classification performed by
the edge devices. Since it is highly scalable and relatively simple, DiffServ may
dominate the next generation Internet in the near future. Its implementation
in the context of a network routing/switching node is shown in Figure 12.24.

—> ,:I__ﬂlm_ﬂlj__l\

s Scheduler
Classifier <‘ fff% ‘;{

Buffer
management

v

D'“ﬁD

FIGURE 12.24: Scheduling in context of processing path of network rout-
ing/switching nodes.

In DiffServ, queues are used for a number of purposes. In essence, they are
only places to store traffic until it is transmitted. However, when several queues
are used simultaneously in a queueing system, they can also achieve effects
beyond those for given traffic streams. They can be used to limit variation in
delay or impose a maximum rate (shaping), to permit several streams to share
a link in a semi-predictable fashion (load sharing) or move variation in delay
from some streams to other streams. Queue scheduling schemes can be divided
into two types: work-conserving and non-work-conserving. A policy is work-
conserving if the server is never idle when packets are backlogged. Among

Embedded Multi-Core Processing for Networking 451

work-conserving schemes, fair queueing is the most important category. WFQ
(weighted fair queueing) [38], WF2Q, WF2Q+ [4] and all other GPS-based
queueing algorithms belong to fair queueing. Another important type of work-
conserving is the service curve scheme, such as SCED [8] and H-FSC [43]. The
operation of these algorithms is schematically described in Figure 12.25.

Queue #1 Bandwidth

Packets
Queue #2 Bandwidth I

Queue #3 Bandwidth _ ﬁ -:’-:ID .:[I:ID

e Foress link ﬁ

| Scheduler
Queue #4 Bandwidth

Scheduling Queues

FIGURE 12.25: Weighted scheduling of flows/queues contending for same
egress network port.

All these schemes present the traffic distortion [29] problem and traffic
characterization at the entrance of the network would not be valid inside the
network. And traffic can get more bursty in the worst case. In downstream
switches, more buffer spaces are required to handle traffic burstiness and the
receiver also needs more buffer space to remove jitter. Non-work-conserving
schemes (also called shapers) are proposed in order to control traffic distortion
inside a network. A policy is non-work-conserving if the server may be idle
even when packets are backlogged. From the definition we can see that non-
work-conserving schemes allow the output link to be idle even when there
are packets waiting for service in order to maintain the traffic pattern. So
bandwidth utilization ratio may be not be high in some cases.

The design of weighted schedulers can follow the generic architecture de-
scribed above for task scheduling to implement multiple traffic management
mechanisms in an efficient way. An extension of the NPU architecture that
could exploit these traffic management extensions is shown in Figure 12.26(a).
This architecture suits better the needs of multi-service network elements
found in access and edge devices that act as traffic concentrators and protocol
gateways. This architecture represents a gateway-on-chip paradigm exploiting
the advances in VLSI technology and SoC design methodologies that enable
the easy integration of multiple IP cores on complex designs. In cases like
this the queuing and scheduling requirements are complicated. Apart from

452 Multi-Core Embedded Systems

the high number of network flows and classes of service (CoS) that need to be
supported, another hierarchy level is introduced that necessitates the exten-
sion of the scheduler architecture described above to support multiple virtual
and physical output interfaces as shown in Figure 12.26(b).

L1} | IIIII IIIII
< Internal Bus > ,,,,,,,,,] [| "IIIE>
§ [[T I 1
!
L1} . . IIIII
L1} . IIII -7 Physical ports
UTOPIA / e
m AAL2, AALS —{ xDSL) . Virtual output ports
AAL2, AALS . K .
E}. Eth. MAC | Eth. MAC ‘{ Eth l /' Class of Service Queues
— 802.11 802.11 // (Scheduling Queues)
80211 aoz (0 Data Memory Manager | Baseband || K
PHY Baseband - < | SN ml
-y DS,_ TCE 1 PCM / HDLC --{ ISDN /
Baseband : AAA 1y
Scheduling Per flow queus
fffff B AM IE*—— (Data Queues)

P;K;&er SDl;’rAangns sﬂ:::“"ﬂ (b)
(a)
FIGURE 12.26: (a) Architecture extensions for programmable service disci-
plines. (b) Queuing requirements for multiple port support.

The generic scheduler architecture, as described in Figure 12.21, and fol-
lowing the organization presented in Figure 12.26 (a) and (b) which incorpo-
rates the internal to the NPU task scheduler inherently supports these hierar-
chical queuing requirements by means of independent scheduling per DQ, SQ
and destination (port). Furthermore, the same module can implement differ-
ent service disciplines (like WRR and DRR) in a programmable fashion with
the same hardware resources. Thus, by proper organization of flows under SQs
per CoS, efficient virtual and physical port scheduling can also be achieved
as described in [35]. Implementation of more scheduling disciplines can also
be achieved easily, by simply adding the service execution logic (finite state
machine or FSM) as a co-processing engine, since the implementation area is
small and operation and configuration is independent among them. Even a
large number of schedulers could be integrated at low cost. Apart from the
implementation of additional FSMs and potentially the associated on-chip
memory (although insignificant) the only hardware extension required is the
extension of the arbiter and memory controller modules to support a larger
number of ports. The required throughput of the pointer memories used re-
mains the same as long as the aggregate bandwidth of the incoming network
interfaces is at most equal to the throughput offered by the DMM unit. The
only limitation is related to the number of supported SQs, which represent
one CoS queue each. Thus, the number of independently scheduled classes of
service is directly proportional to the hardware resources that will be allo-
cated for the implementation of the SQ memories and priority enforcers for
fast searching in these memories, which can be extended to very high num-
bers of SQs as presented in [24]. In addition, functionality already present in
the current scheduler implementation allows for deferring service of one SQ

Embedded Multi-Core Processing for Networking 453

and manipulation of its parameters under software control. This feature offers
itself for easy migration of one CoS from one scheduling discipline to another
in this extended architecture.

With these extensions the NPU can efficiently support concurrent schedul-
ing mechanisms for network traffic, crossing even dissimilar interfaces.
Scheduling of variable length packet flows having as destinations packet inter-
faces (like Ethernet, packet-over-SONET etc.) can be scheduled by means of
a packet scheduling algorithm like DRR or self-clocked fair queueing (SCFQ,
[12]). The efficient implementation of packet fair queuing algorithms like
SCFQ, according to the generic methodology presented in this section has
also been discussed in [39]. Moreover, a novel feature of this architecture is
its flexibility to implement hierarchical scheduling schemes only with pointer
movement without necessitating data movement. Scheduling packets over mul-
tiple interfaces of the same type (e.g., multiple Ethernet interfaces) is easily
achieved by assigning appropriate weights (that represent the relative share
of a flow with respect to the aggregate capacity of the physical links) and
different destinations (port) per flow. The only remaining hardware issue that
requires attention is the handling of busy indication signals from the different
physical ports to determine schedulable flows/SQs.

12.7 Conclusions

State-of-the-art telecommunication systems require modules with increased
throughput in terms of packets processed per second and with advanced func-
tionality extending to multiple layers of the protocol stack. High-speed data-
path functions can be accelerated by hard wired implementations integrated
as processing cores in multi-core embedded system architectures. This allows
each core to be optimized either for processing intensive functions to alle-
viate bottlenecks in protocol processing or intelligent memory management
techniques to sustain the throughput for data and control information storage
and retrieval and exceed the performance of legacy SW-based implementa-
tions on generic microprocessor based architectures, which cannot scale to
gigabit-per-second link rates.

The network processing units (NPUs) that we examined in this chapter in
the strict sense are fully programmable chips like CPUs or DSPs but, instead
of being optimized for the task of computing or digital signal processing,
they have been optimized for the task of processing packets and cells. In this
sense NPUs combine the flexibility of CPUs with the performance of ASICs,
accelerating the development cycles of system vendors, forcing down cost, and
creating opportunities for third-party embedded software developers.

454

Multi-Core Embedded Systems

NPUs in the broad sense encompass both dedicated and programmable
solutions:

Dedicated line-aggregation devices that combine several channels of
high-level data link control support sometimes optimized for a specific
access system such as DSL

Intelligent memories, e.g., content-addressable memories that support
efficient searching of complex multi-dimensional lookup-tables

Application-specific ICs optimized for one specific protocol processing
task, e.g., encryption

Programmable processors optimized for one specific protocol processing
task, e.g., header parsing

Programmable processors optimized for several protocol processing tasks

The recent wave of network processors is aimed at packet parsing and
header analysis. Two evolutions favor programmable implementations. First,
the need to investigate and examine more header fields covering different layers
of the OSI model, make an ASIC implementation increasingly complex. Sec-
ondly, flexibility is required to deal with emerging solutions for QoS and other
services that are not yet standardized. The challenge for the programmable
network processors lies in the scalability to core applications running at 10
Gbits/s and above (which is why general-purpose processors are not up to the

job).

The following features of network processors have been taken into account
to structure this case study:

Target application domain (LAN, access, WAN, core/edge etc.).

Target function (data link processing including error control, framing
etc., classification, data stream transformation including encryption,
compression etc., traffic management including buffer management, pri-
oritization, scheduling, shaping, and higher layer protocol/FSM imple-
mentation)

Architecture characteristics including:

— Architecture based on instruction-set processor (ISP), pro-
grammable state machine (PSM), ASIC (non-programmable), in-
telligent memory (CAM)

— Type of ISP (RISC, DSP)

— Centralized or distributed architecture

Programmable or dedicated

DSP acceleration through extra instructions or co-processors

Embedded Multi-Core Processing for Networking 455

— Presence of re-configurable hardware
Software development environment (for programmable NPUs)
Performance in terms of data rates

Implementation: processing technology, clock speed, package, etc.

Review Questions and Answers

[Q-1]

[Q-2]

Q3]

What is the range of applications that are usually executed in
network processing units?

Refer to Section 12.1 of the text. Briefly, network processing functions
can be summarized as follows:

e Implementation of physical ports, physical layer processing and traffic
switching

e Framing

e (Classification

e Modification

e Content /protocol processing

e Traffic engineering, scheduling and shaping algorithms

What are the processing requirements and the bottlenecks
that led to the emergence of specialized NPU architectures?

Two major factors drive the need for NPUs: i) increasing network
bit rate, and ii) more sophisticated protocols for implementing multi-
service packet-switched networks. NPUs have to address the above com-
munications system performance issues by coping with three major
performance-related resources in a typical data communications system:

1. Processing cores (limited processing capability and frequency of op-
eration of single, general purpose, processing units)

2. System bus(es) (limited throughput and scalability)

3. Memory (limited throughput and scalability of centralized architec-
tures)

What are the main differences in NPU architectures targeting
access/metro networks compared to those targeting core net-
works?
Due to the different application requirements there are the following dif-
ferences:
e Overall throughput (access processors usually achieve throughputs in

456

Q4]

[Q-5

Multi-Core Embedded Systems

the order of 1 Gbps, which is adequate for most access network technolo-
gies, whereas core networks may require an order of magnitude higher
bandwidth i.e., 10-40 Gbps)

e Number of processing cores (single-chip TADs can integrate only a
couple of general purpose CPUs, whereas high-end NPUs can integrate
4-64 processing cores)

e Multiplicity and dissimilarity of interfaces/ports (access processors
frequently must support bridging between multiple networks of different
technologies, whereas core processors are required to interface to high-
speed line-cards and switching fabrics through a limited set of standard-
ized interfaces)

e Architectural organization (access processors frequently require
custom processing units since intelligent content processing, e.g.,
(de)encryption, (de)compression, transcoding, content inspection, etc.
is usually pushed to the edge of the network, whereas core processors
require ultimate throughput and traffic management which is addressed
through massively parallel, pipelined and programmable FSM architec-
tures with complicated memory management and scheduling units)

Why is latency not very important when packet-processing
tasks are executed on a network processor? What happens
when such a task is stalled?

Usually a network processor time-shares between many parallel tasks.
Typically such tasks are independent, because they process packets from
different flows. So, when a task is stalled (e.g., on a slow external memory
access or a long-running coprocessor operation) the network processor
switches to another waiting task. In this way, almost no processing cycles
get wasted.

Which instruction-level-parallel processor architecture is more
area-efficient: superscalar, or VLIW? Why?

Very long instruction word (VLIW) is more area-efficient than super-
scalar, because the latter includes a lot of logic dedicated to “discov-
ering” at run time instructions that can be executed simultaneously.
VLIW architectures include no such logic; instead they require that the
compiler schedules instructions statically at compile time.

What are the pros and cons of homogeneous and heteroge-
neous parallel architectures?

By specializing each processing element to a narrowly defined processing
task, heterogeneous architectures can achieve higher peak performance
for each individual task. On the other hand, with such architectures,
one has to worry about load balancing: the system architects need to
choose the correct number and performance of each type of PE, a prob-
lem with no general solution, while the users must be careful to code

Embedded Multi-Core Processing for Networking 457

the applications in a way that balances the load between the different
kinds of available PEs. With homogeneous architectures, the architect
only needs to replicate a single type or PE as many times as silicon area
allows, while the user can always take advantage of all available PEs.
This of course comes at the cost of lower peak PE performance.

Define multi-threading.

A type of lighweight time-sharing mechanism. Threads are akin to pro-
cesses in the common operating system sense, but hardware support
allows very low (sometimes zero) overhead when switching between
threads. So, it is possible to switch to a new thread even when the
current thread will be stalled for a few clock cycles (e.g., an external
memory access or an operation executed on a coprocessor). This allows
the processor to take advantage of (almost) all processing cycles, by
making progress on an alternate thread when the current one is stalled
even briefly.

Explain how the PRO3 processor overlaps processing with
memory accesses.
Refer to Section 12.3.2 of the text.

Mention some types of custom instructions specific to network
processing tasks.

e Extraction of bit fields of arbitrary lengths and from arbitrary offsets
within a word

e Insertion of bit fields of arbitrary lengths into arbitrary offsets within
a word

e Parallel multi-way branches (or parallel comparisons, as in the IXP
architecture)

e CRC/checksum calculation or hash function evaluation

[Q-10] Define the problem of packet classification

Refer to the introductory part of Section 12.4 of the text.

[Q-11] Name a few applications of classification

e Destination lookup for IP forwarding

e Access control list (ACL) filtering

e QoS policy enforcing

e Stateful packet inspection

e Traffic management (packet discard policies)
e Security-related decisions

e URL filtering

e URL-based switching

e Accounting and billing

[Q-12] What are the pros and cons of CAM-based classification ar-

chitectures?

458

Multi-Core Embedded Systems

CAM-based lookups are the fastest and simplest ways to search a rule
database. However, CAMs come at high cost and have high power dis-
sipation. In addition, the capacity of a CAM device may enforce a hard
upper bound on database size. (Strictly speaking, the same is true for al-
gorithmic architectures, but since these usually rely on low-cost DRAM,
it is easier to increase the memory capacity for large rule databases.)

[Q-13] How does iFlow’s Address Processor exploit embedded

DRAM technology?

First of all, it combines the database storage with all the necessary
lookup and update logic into one device, thus reducing overall cost. Sec-
ond, it takes advantage of a very wide internal memory interface to read
out many nodes of the data structure and make that many comparisons
in parallel, thus improving performance.

[Q-14] What are the main processing tasks of a queue management

unit?
Refer to the introductory parts of Sections 12.5 and 12.5.2 of the text.

[Q-15] What are the criteria of selecting memory technology when

designing queue management units for NPU?

Refer to Sections 12.5.1 and 12.5.2 of the text. Briefly, the memory tech-
nology of choice should provide:

e Adequate throughput depending on the data transaction (read/write,
single/burst etc.) requirements

e Adequate space depending on the storage requirements

e Limited cost, board space and power consumption

[Q-16] What are the main bottlenecks in queue management appli-

cations and how are they addressed in NPU architectures?
Refer to Sections 12.5.1 and 12.5.2 of the text. Briefly, the main per-
formance penalties are due to timing limitations related to successive
memory operations depending on the memory technology. DRAM is an
indicative case of memory technology which requires sophisticated con-
trollers due to the limitations in the order of accesses, depending on its
organization in banks, its requirements for pre-charging cycles, etc., to
enhance its performance and better utilize its resources. Such controllers
can enhance memory throughput through multiple techniques e.g., ap-
propriate free list organization, appropriate scheduling of accesses re-
quested by multiple sources enforcing reordering, arbitration, internal
backpressure, etc.

[Q-17] What are the similarities and differences between task and

traffic scheduling?
Both applications are related to resource management based on QoS
criteria. In general scheduling refers to the task of ordering in time the

Embedded Multi-Core Processing for Networking 459

execution of processes, which can either be processing tasks that require
the exchange of data inside an NPU or transmission of data packets in
a limited capacity physical link. In both cases the data on which the
process is going to be executed are ordered in multiple queues served
with an appropriate discipline that guarantees some performance crite-
ria (delay, throughput, data loss etc.). Depending on the application,
different requirements need to be met, in order delivery, rate-based flow
limiting, etc. Task processing has three important differences in the way
it should be implemented: i) the finish time of a processing task in con-
trast to packet transmission delays, which depend only on link capacity
and packet length, may be unknown or hard to determine (e.g., due
to the stochastic nature of branch executions that depend on the con-
tent of data which are not a priori known to the scheduler), ii) the
availability of the resources varies dynamically and may have specific
limitations due to dependencies in pipelined execution or atomic opera-
tions in parallel processing, etc., and iii) the optimization of throughput
in task scheduling may require load balancing, i.e., distribution of tasks
to any available resource whereas traffic scheduling needs to coordinate
requests for access to the same predetermined resource (i.e., port/link).

[Q-18] What are the main processing tasks of a traffic scheduling

unit?

Refer to Section 12.6 of the text. Briefly, traffic scheduling requires the
implementation of an appropriate packet queuing scheme (a number of
priority queues, possibly hierarchically organized) and the implemen-
tation of an appropriate arbitration scheme either in a deterministic
manner or in the most complex case computing per packet informa-
tion (finish times) and sorting appropriately among all packets awaiting
service (e.g., DRR, SCFQ, WFQ-like algorithms etc.).

Bibliography

1
2]

BGP routing tables analysis reports. http://bgp.potaroo.net.

Matthew Adiletta, Mark Rosenbluth, Debra Bernstein, Gilbert Wolrich,
and Hugh Wilkinson. The next generation of Intel IXP network proces-
sors. Intel Technology Journal, 6(3):6-18, 2002.

J.R. Allen, B.M. Bass, C. Basso, R.H. Boivie, J.L.. Calvignac, G.T. Davis,
L. Frelechoux, M. Heddes, A. Herkersdorf, A. Kind, J.F. Logan, M. Peyra-
vian, M.A. Rinaldi, R.K. Sabhikhi, M.S. Siegel, and M. Waldvogel. IBM
PowerNP network processor: hardware, software, and applications. IBM
Journal of Research and Development, 47(2/3):177-193, 2003.

460

(4]

(5]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

Multi-Core Embedded Systems

Jon C. R. Bennett and Hui Zhang. Why WFQ is not good enough for
integrated services networks. In Proceedings of NOSSDAV 96, 1996.

Haiying Cai, Olivier Maquelin, Prasad Kakulavarapu, and Guang R. Gao.
Design and evaluation of dynamic load balancing schemes under a fine-
grain multithreaded execution model. Technical report, Proceedings of the
Multithreaded Execution Architecture and Compilation Workshop, 1997.

C-port Corp. C-5 network processor architecture guide, CSNPD0-AG/D,
May 2001.

Patrick Crowley, Mark A. Franklin, Haldun Hadimioglu, and Peter Z.
Onufryk. Network Processor Design: Issues and Practices. Morgan Kauf-
mann, 2003.

R. L. Cruz. SCED+: efficient management of quality of service guaran-
tees. In Proceedings of INFOCOM’98, pages 625-642, 1998.

EZchip. Network processor designs for next-generation networking equip-
ment. http://www.ezchip.com/t_npu_whpaper.htm, 1999.

EZchip. The role of memory in NPU system design.
http://www.ezchip.com/t_memory_whpaper.htm, 2003.

V. Fuller and T. Li. Classless inter-domain routing (CIDR): The internet
address assignment and aggregation plan. RFC4632.

Jahmalodin Golestani. A self-clocked fair queueing scheme for broadband
applications. In Proceedings of INFOCOM’94 13th Networking Coference
for Global Communications, volume 2, pages 636—646, 1994.

Network Processing Forum Hardware Working Group. Look-aside (LA-
1B) interface implementation agreement, August 4 2004.

Pankaj Gupta and Nick McKeown. Classifying packets with hierarchical
intelligent cuttings. IEEE Micro, 20(1):34-41, 2000.

Pankaj Gupta and Nick McKeown. Algorithms for packet classification.
IEEFE Network, 15(2):24-32, 2001.

A. El-Mahdy I. Watson, G. Wright. VLSI architecture using lightweight
threads (VAULT): Choosing the instruction set architecture. Technical
report, Workshop on Hardware Support for Objects and Microarchitec-
tures for Java, in conjunction with ICCD’99, 1999.

IBM. PowerNP NP4GS3.

Motorola Inc. Q-5 traffic management coprocessor product brief,
Q5TMC-PB, December 2003.

Intel. Intel IXP2400, IXP2800 network processors.

[20]
[21]

[22]

[29]

[30]

[31]

[32]

Embedded Multi-Core Processing for Networking 461

ISO/IEC JTC SC25 WG1 N912. Architecture of the residential gateway.

Manolis Katevenis. Fast switching and fair control of congested flow in
broadband networks. IEEE Journal on Selected Areas in Communica-
tions, 5:1315-1326, Oct. 1987.

Manolis Katevenis, Sotirios Sidiropoulos, and Christos Courcoubetis.
Weighted round robin cell multiplexing in a general-purpose ATM switch
chip. IEEE Journal on Selected Areas in Communications, 9, 1991.

Donald E. Knuth. The Art of Computer Programming, volume 3: Sorting
and Searching. Addison-Wesley, 1973.

George Kornaros, Theofanis Orphanoudakis, and Ioannis Papaefstathiou.
Active flow identifiers for scalable, qos scheduling. In Proceedings IEEE
International Symposium on Circuits and Systems ISCAS’03, 2003.

George Kornaros, Theofanis Orphanoudakis, and Nicholas Zervos. An
efficient implementation of fair load balancing over multi-CPU SoC ar-
chitectures. In Proceedings of Euromicro Symposium on Digital System
Design Architectures, Methods and Tools, 2003.

K. R. Renjish Kumar, A. L. An, and Lillykutty Jacob. The differentiated
services (diffserv) architecture, 2001.

V. Kumar, T. Lakshman, and D. Stiliadis. Beyond best-effort: Router
architectures for the differentiated services of tomorrow’s internet. IFEE
Communications Magazine, 36:152—-164, 1998.

Sridhar Lakshmanamurthy, Kin-Yip Liu, Yim Pun, Larry Huston, and
Uday Naik. Network processor performance analysis methodology. Intel
Technology Journal, 6, 2002.

Wing-Cheong Lau and San-Qi Li. Traffic distortion and inter-source
cross-correlation in high-speed integrated networks. Computer Networks
and ISDN Systems, 29:811-830, 1997.

Panos Lekkas. Network Processors. Architectures, Protocols, and Plat-
forms. McGraw-Hill, 2004.

Evangelos Markatos and Thomas Leblanc. Locality-based scheduling in
shared-memory multiprocessors. Technical report, Parallel Computing:
Paradigms and Applications, 1993.

Steve Melvin, Mario Nemirovsky, Enric Musoll, Jeff Huynh, Rodolfo Mil-
ito, Hector Urdaneta, Koroush Saraf, and Myers Llp. A massively mul-
tithreaded packet processor. In Proceedings of NP2, Held in conjunction
with HPCA-9, 2003.

462

[33]

[34]

[35]

[36]

[38]

[39]

[40]

Multi-Core Embedded Systems

Aristides Nikologiannis and Manolis Katevenis. Efficient per-flow queue-
ing in DRAM at OC-192 line rate using out-of-order execution techniques.
In Proceedings of ICC2001, pages 2048-2052, 2001.

Mike O’Connor and Christopher A. Gomez. The iFlow address processor.
IEEE Micro, 21(2):16-23, 2001.

Theofanis Orphanoudakis, George Kornaros, Ioannis Papaefstathiou,
Hellen-Catherine Leligou, and Stylianos Perissakis. Scheduling compo-
nents for multi-gigabit network SoCs. In Proceedings SPIE International
Symposium on Microtechnologies for the New Millennium, VLSI Circuits
and Systems Conference, Canary Islands, 2003.

Toannis Papaefstathiou, George Kornaros, Theofanis Orphanoudakis,
Kchristoforos Kachris, and Jacob Mavroidis. Queue management
in network processors. In Design, Automation and Test in Europe
(DATE2005), 2005.

Toannis Papaefstathiou, Stylianos Perissakis, Theofanis Orphanoudakis,
Nikos Nikolaou, George Kornaros, Nicholas Zervos, George Konstan-
toulakis, Dionisios Pnevmatikatos, and Kyriakos Vlachos. PRO3: a hy-
brid NPU architecture. IEEE Micro, 24(5):20-33, 2004.

Abhay K. Parekh and Robert G. Gallager. A generalized processor shar-
ing approach to flow control in integrated services networks: The single-
node case. IEEE/ACM Transactions on Networking, 1:344-357, 1993.

Jennifer Rexford, Flavio Bonomi, Albert Greenberg, and Albert Wong.
Scalable architectures for integrated traffic shaping and link scheduling
in high-speed ATM switches. IEEE Journal on Selected Areas in Com-
munications, 15:938-950, 1997.

Tammo Spalink, Scott Karlin, Larry Peterson, and Yitzchak Gottlieb.
Building a robust software-based router using network processors. In

Proceedings of the 18th ACM Symposium on Operating Systems Princi-
ples (SOSP), pages 216-229, 2001.

V. Srinivasan, S. Suri, G. Varghese, and M. Waldvogel. Fast and scalable
layer four switching. In Proceedings of ACM Sigcomm, pages 203-214,
September 1998.

Donpaul C. Stephens, Jon C. R. Bennett, and Hui Zhang. Implementing
scheduling algorithms in high speed networks. IEEE JSAC, 17:1145-1158,
1999.

Tan Stoica, Hui Zhang, and T.S.E Ng. A hierarchical fair service curve
algorithm for link-sharing, real-time, and priority services. IEEE/ACM
Transactions on Networking, 8(2):185-199, 2000.

[44]

[45]

[47]

[48]

Embedded Multi-Core Processing for Networking 463

Sandy Teger and David J. Waks. End-user perspectives on home net-
working. IEEE Communications Magazine, 40:114-119, 2002.

K. Vlachos, T. Orphanoudakis, Y. Papaefstathiou, N. Nikolaou, D. Pnev-
matikatos, G. Konstantoulakis, J.A. Sanches-P, and N. Zervos. Design
and performance evaluation of a programmable packet processing engine
(ppe) suitable for high-speed network processors units. Microprocessors
and Microsystems, 31(3):188-199, May 2007.

David Whelihan and Herman Schmit. Memory optimization in single
chip network switch fabrics. In Design Automation Conference, 2002.

Xipeng Xiao and Lionel M. Ni. Internet QoS: A big picture. I[EEE
Network, 13:8-18, 1999.

Wenjiang Zhou, Chuang Lin, Yin Li, and Zhangxi Tan. Queue manage-
ment for qos provision build on network processor. In Proceedings of the
The Ninth IEEE Workshop on Future Trends of Distributed Computing
Systems (FTDCS’03), page 219, 2003.

