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Abstract Scheduling is an important tool for a manufac-
turing system, where it can have a major impact on the pro-
ductivity of a production process. In order to find an opti-
mal solution to scheduling problems it gives rise to complex
combinatorial optimization problems. Unfortunately, most of
them fall into the class of NP-hard combinatorial problems.
In this paper, we focus on the design of multiobjective evolu-
tionary algorithms (MOEAs) to solve a variety of scheduling
problems. Firstly, we introduce fitness assignment mecha-
nism and performance measures for solving multiple objec-
tive optimization problems, and introduce evolutionary rep-
resentations and hybrid evolutionary operations especially
for the scheduling problems. Then we apply these EAs to the
different types of scheduling problems, included job shop
scheduling problem (JSP), flexible JSP, Automatic Guided
Vehicle (AGV) dispatching in flexible manufacturing sys-
tem (FMS), and integrated process planning and schedul-
ing (IPPS). Through a variety of numerical experiments, we
demonstrate the effectiveness of these Hybrid EAs (HEAs)
in the widely applications of manufacturing scheduling prob-
lems. This paper also summarizes a classification of schedul-
ing problems, and illustrates the design way of EAs for the
different types of scheduling problems. It is useful to guide
how to design an effective EA for the practical manufacturing
scheduling problems. As known, these practical scheduling
problems are very complex, and almost is a combination of
different typical scheduling problems.
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Introduction

Scheduling is one of the most important fields in manu-
facturing optimization. Scheduling involves determining the
allocation of plant resources. Tasks must be assigned to the
process units, and the duration and amount of processed
material related to those assigned tasks must be determined
(Verderame and Christodoulos 2008). For a more extensive
explanation of the various aspects of the scheduling model,
the reader is directed to the reviews of (Floudas and Lin 2004)
(Floudas and Lin 2005). The quality of the planning model
and the integration scheme can be rendered inconsequential
if the scheduling level does not rigorously model of the pro-
duction capacity of the plant, which is greatly dependent on
the chosen time representation. Bidot et al. (2009) gave detail
definitions to avoid ambiguity of terms commonly used by
different communities: complete schedule, flexible schedule,
conditional schedule, predictive schedule, executable sched-
ule, adaptive scheduling system, robust predictive schedule
and table predictive schedule. However, to find the optimal
solutions of manufacturing scheduling gives rise to complex
combinatorial optimization problems, unfortunately, most of
them fall into the class of NP-hard combinatorial problems.

Since the 1960s, there has been being an increasing inter-
est in imitating living beings to solve the hard optimiza-
tion problems. An evolutionary algorithm (EA) is a generic
population-based meta-heuristic optimization algorithm. An
EA uses some mechanisms inspired by biological evolution:
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reproduction, mutation, recombination, and selection. Can-
didate solutions to the optimization problem play the role
of individuals in a population, and the fitness function deter-
mines the environment within which the solutions “live” (see
also cost function). Evolution of the population then takes
place after the repeated application of the above operators.
Handa et al. (2008) gave a comprehensive overview of recent
advances of evolutionary computation (EC) studies, as shown
in Fig. 1. EAs differ in the implementation details and the
nature of the particular applied problem. EAs has attracted
significantly attention with respect to complexity schedul-
ing, which is referred to evolutionary scheduling, it is vital
research domain at interface of two important sciences—
artificial intelligence and operational research (Dahal et al.
2007).

In the last decade, Nowicki and Smutnicki (2005) pro-
vided an approximate Tabu search algorithm for JSP that is
based on the big valley phenomenon, and uses some elements
of so-called path relinking technique as well as new theoret-
ical properties of neighborhoods. Tavakkoli-Moghaddam et

al. (2005) used neural network approach to generate initial
feasible solutions and adapted a simulated annealing algo-
rithm to improve the quality and performance of the solution
in JSP. Meeran and Morshed (2012) proposed such as one
solution method incorporating GA and Tabu Search for JSP.
The rationale behind using such a hybrid method in case of
other systems which use GA and TS is to combine the diver-
sified global search and intensified local search capabilities
of GA and TS respectively. Wu and Weng (2005) consid-
ered the problem with job earliness and tardiness objec-
tives, and proposed a multiagent scheduling method. Xia
and Wu (2005) treated this problem with a hybrid of Par-
ticle Swarm Optimization (PSO) and simulated annealing as
a local search algorithm. Zhang and Gen (2005) proposed
a multistage operation-based genetic algorithm to deal with
the FJSP problem from the point view of dynamic program-
ming. Kacem et al. (2002a) proposed a GA controlled by
the assigned model which is generated by the approach of
localization. Najid et al. (2002) used simulated annealing
for optimizing the flexible assignment of machines in FJSP.
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Lopez and Ramirez (2005) newly describe the design and
implementation of a step-based manufacturing information
system to share flexible manufacturing resources data.

Recently, manufacturing scheduling problems are also
formulated in distributed and dynamic environments. Xiang
and Lee (2008) proposed an ant colony intelligence algo-
rithm for multi-agent dynamic manufacturing scheduling.
Ant colony intelligence (ACI) is proposed to be combined
with local agent coordination so as to make autonomous
agents adaptive to changing circumstances and to give rise
to efficient global performance. Wang et al. (2008) pro-
posed a multi-agent approach integrated with a filtered beam-
search (FBS)-based heuristic algorithm which was proposed
to study the dynamic scheduling problem in a FMS shop floor
consisting of multiple manufacturing cells.

Framinan and Ruiz (2010) gave a research review for
architecture of manufacturing scheduling systems. Process
planning and scheduling were regarded as separate tasks
performed sequentially, where scheduling was implemented
after process plans had been generated. However, their func-
tions are usually complementary. If the two systems can be
integrated more tightly, greater performance and higher pro-
ductivity of manufacturing system can be achieved. Shao
et al. (2009) proposed an integration process planning
and scheduling model and gave a genetic algorithm-based
approach have been developed to facilitate the integration
and optimization of the two functions. In order to improve
the optimized performance of the genetic algorithm-based
approach, more efficient genetic representations and opera-
tor schemes have been developed. Li et al. (2010) proposed
an agent-based approach for integrated process planning and
scheduling. In this approach, the two functions are carried
out simultaneously, and an optimization agent based on an
evolutionary algorithm is used to manage the interactions and
communications between agents to enable proper decisions
to be made.

Furthermore, many researches are focusing on the multi-
objectives manufacturing scheduling problems. Li and Huo
(2009) proposed a GA for multi-objective FJSP with con-
sideration of maintenance planning, intermediate inventory,
and machines in parallel, which had a background of practi-
cal scheduling problem in seamless steel tube production.
Geiger (2011) proposed a heuristic search, intensification
through variable neighborhoods, and diversification through
perturbations and successive iterations in favorable regions of
the search space, and successfully tested on permutation flow
shop scheduling problems under multiple objectives. Karimi-
Nasab and Aryanezhad (2011) introduced a multi-product
multi-period production planning problems. A novel multi-
objective model for the production smoothing problem on a
single stage facility that some of the operating times could be
determined in a time interval for. The proposed model was
solved by a genetic algorithm, using a novel achievement

function for exploring the solution space, based on LP-metric
concepts. Li et al. (2012) proposed Nash equilibrium in game
theory based approach has been used to deal with the multi-
objective integrated process planning and scheduling. Gho-
lami and Zandieh (2009) integrated simulation into GA to
the dynamic scheduling of a flexible job shop with machines
that suffer stochastic breakdowns. The objectives are the min-
imization of two criteria, expected makespan and expected
mean tardiness. Elyn et al. (2011) proposed an ACI algorithm
for a flowshop scheduling problem with minimizing both the
makespan and the total completion time of jobs. Zandieh and
Karimi (2011) considered a multi-objective group schedul-
ing problem in hybrid flexible flowshop with sequence-
dependent setup times by minimizing total weighted tardi-
ness and maximum completion time simultaneously. They
proposed a multi-population genetic algorithm. First stage
applies combined objective of mentioned objectives and sec-
ond stage uses previous stage’s results as an initial solution.
In the second stage sub-population will be generated by re-
arrangement of solutions of first stage. Voratas and Siriwan
(2011) proposed a two-stage genetic algorithm (2S-GA) for
multi-objective Job Shop scheduling problems. The 2S-GA is
proposed with three criteria: minimize makespan, minimize
total weighted earliness, and minimize total weighted tardi-
ness. The proposed algorithm is composed of two Stages:
Stage 1 applies parallel GA to find the best solution of each
individual objective function with migration among popula-
tions. In Stage 2 the populations are combined. The evolu-
tion process of Stage 2 is based on Steady-State GA using
the weighted aggregating objective function.

Even if EAs have attracted significantly attention with
respect to above complexity scheduling problems, it has a
disadvantage: we have to design a specialized EA for each
practical scheduling problem with the problem’s specificity.
So that means each class of EAs doesn’t have a wide range
of applications on manufacturing scheduling. Michalewicz
(1994) summarized five basic components of EA:

(1) An evolutionary representation of potential solutions to
the problem.

(2) A way to create a population (an initial set of potential
solutions).

(3) An evaluation function rating solutions in terms of their
fitness.

(4) Evolutionary operators that alter the genetic composition
of offspring (crossover, mutation, selection, etc).

(5) Parameter values that evolutionary algorithm uses (pop-
ulation size, probabilities of applying evolutionary oper-
ators, etc).

In order to design an effective EA with the problem’s
specificity, we have to consider (1) how to design a represen-
tation and a way of population initialization; (2) how to evalu-
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ate an individual by a fitness function; (3) how to improve ini-
tialization by evolutionary operators. In this paper, we focus
on the effective multiobjective EA design for a wide range
of applications on manufacturing scheduling. We will dis-
cuss the representation design of potential solutions to the
scheduling problems, the fitness assignment mechanisms to
the multiobjective scheduling problems, and the evolutionary
operation design to improve solution simultaneously.

The rest of this paper is organized as follows: “Multi-
objective evolutionary algorithm” section introduces multi-
objective EA, and give fitness assignment mechanism, per-
formance measures for multiobjective scheduling problems;
How to present a solution of the scheduling problem into a
chromosome is given in “Evolutionary representation” sec-
tion; How to improve an individual by using hybrid evolu-
tionary operations is given in “Hybrid evolutionary opera-
tions” section; “Scheduling formulations and EAs” section
presents the brief mathematical formulations of the typical
scheduling problems, and discusses the current state-of-the-
art EAs for solving them. Finally, the conclusion of this paper
and future researches are drawn in “Conclusion” section.

Multiobjective evolutionary algorithm

The multiple objective optimization problems have been
receiving growing interest from researchers with various
backgrounds since early 1960 (Hwang and Yoon 1981).
There are a number of scholars who have made significant
contributions to the problem. Among them, Pareto is perhaps
one of the most recognized pioneers in the field (Pareto 1906).
Recently, EAs have been received considerable attention as
a novel approach to multiobjective optimization problems,
resulting in a fresh body of research and applications known
as evolutionary multiobjective optimization (EMO).

The inherent characteristics of EAs demonstrate why evo-
lutionary search is possibly well suited to the multiple objec-
tive optimization problems. The basic feature of EAs is the
multiple directional and global searches by maintaining a
population of potential solutions from generation to gener-
ation. The population-to-population approach is hopeful to
explore all Pareto solutions. EAs do not have much mathe-
matical requirements about the problems and can handle any
kind of objective functions and constraints. Due to their evo-
lutionary nature, the EAs can search for solutions without
regard to the specific inner workings of the problem. There-
fore, it is more hope for solving much complex problems
than the conventional methods.

EAs are essentially a kind of meta-strategy methods.
When applying the EAs to solve a given problem, it is nec-
essary to refine upon each of the major components of EAs,
such as encoding methods, recombination operators, fitness
assignment, selection operators, constraints handling, and

so on, in order to obtain a best solution to the given prob-
lem. Because the multiobjective optimization problems are
the natural extensions of constrained and combinatorial opti-
mization problems, so many useful methods based on EAs
developed during the past two decades. One of special issues
in the multiobjective optimization problems is fitness assign-
ment mechanism. Since the 1980s, several fitness assignment
mechanisms have been proposed and applied in multiobjec-
tive optimization problems (Gen et al. 2008). Although most
fitness assignment mechanisms are just different approach
and suitable to different cases of multiobjective optimization
problems, in order to understanding the development of mul-
tiobjective EAs (MOEAs), we classify algorithms according
to proposed years of different approaches:

Type 1 Vector evaluation approach

Vector evaluated genetic algorithm (VEGA: Schaffer
1985) is the first notable work to solve multiobjective prob-
lems in which it uses a vector fitness measure to create
the next generation. The selection step in each generation
becomes a loop. Each time through the loop the appropriate
fraction of the next generation, or subpopulation, is selected
on the basis of each objective. The entire population is shuf-
fled thoroughly to apply crossover and mutation operators.
This is performed to achieve the mating of individuals of
different subpopulations.

Type 2 Pareto ranking + Diversity

Multiobjective genetic algorithm (MOGA: Fonseca and
Fleming 1995): Fonseca and Fleming proposed multiobjec-
tive genetic algorithm (MOGA) in which the rank of a certain
individual corresponds to the number of individuals in the
current population by which it is dominated. Based on this
scheme, all the nondominated individuals are assigned rank
1, while dominated ones are penalized according to the pop-
ulation density of the corresponding region of the tradeoff
surface.

Non-dominated sorting genetic algorithm (NSGA: Dev
1995): Srinivas and Deb also developed a Pareto ranking-
based fitness assignment and it called Nondominated Sort-
ing Genetic Algorithm (NSGA). In each method, the non-
dominated solutions constituting a nondominated front are
assigned the same dummy fitness value. These solutions are
shared with their dummy fitness values (phenotypic sharing
on the decision vectors) and ignored in the further classifica-
tion process. Finally, the dummy fitness is set to a value less
than the smallest shared fitness value in the current nondomi-
nated front. Then the next front is extracted. This procedure is
repeated until all individuals in the population are classified.

Type 3 Weighted Sum + Elitist Preserve

Random-weight genetic algorithm (RWGA: Ishibuchi
and Murata 1998): Ishibuchi et al. proposed a weighted-
sum based fitness assignment method, called random-weight
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Genetic Algorithm (RWGA) to obtain a variable search direc-
tion toward the Pareto frontier. Weighted-sum approach can
be viewed as an extension of methods used in the multiobjec-
tive optimizations to GAs. It assigns weights to each objec-
tive function and combines the weighted objectives into a
single objective function. In RWGA, each objective fk(x)

is assigned a weight wk = rk/
∑q

j=1 r j , where r j are non-
negative random number between [0, 1] with q objective
functions. And the scalar fitness value is calculated by sum-
ming up the weighted objective value wk · fk(x). To search
for multiple solutions in parallel, the weights are not fixed
and able to uniformly the sample area towards to the whole
frontier.

Strength Pareto evolutionary algorithm II (SPEA II:
Zitzler and Thiele 2001): Zitzler and Thiele proposed
strength Pareto Evolutionary Algorithm (SPEA: Zitzler and
Thiele 1999) and an extended version SPEA II (Zitzler and
Thiele 2001) that combines several features of previous mul-
tiobjective Genetic Algorithms (MOGA) in a unique man-
ner. The fitness assignment procedure is a two-stage process.
First, the individuals in the external nondominated set P ′ are
ranked. Each solution i ∈ P ′ is assigned a real value si ∈[0,
1), called strength; si is proportional to the number of pop-
ulation members j ∈ P for which i � j . Let n denote the
number of individuals in P that are covered by i and assume
N is the size of P . Then si is defined as si = n/(N + 1).
The fitness fi of objective i is equal to its strength: fi = si .
Afterwards, the individuals in the population P are evaluated.
The fitness of an individual j ∈ P is calculated by summing
the strengths of all external nondominated solutions i ∈ P ′
that cover j . The fitness is f j = 1 + ∑

i∈{i� j} si , where
f j ∈ [1, N ).

Adaptive-weight genetic algorithm (AWGA: Gen and
Cheng 2000): Gen and Cheng proposed another weight
sum-based fitness assignment method, called Adaptive-
weight Genetic Algorithm (AWGA) which utilizes some
useful information from the current population to readjust
weights to obtain a search pressure toward the Pareto fron-
tier. When considering the maximization problem with q
objectives, we define two extreme points: the maximum
extreme point z+ = {zmax

1 , zmax
2 . . .zmax

q } and the mini-
mum extreme point z− = {zmin

1 , zmin
2 . . .zmin

q } in each
generation. Each objective k is assigned a weight wk =
1/

(
zmax

k − zmin
k

)
. And the scalar fitness value is calculated

by
∑q

k=1 ( fk(x) − zmin
k )/(zmax

k − zmin
k ).

Non-dominated sorting genetic algorithm II (NSGA
II: Deb 2001): Deb suggested a nondominated sorting-based
approach, called non-dominated sorting Genetic Algorithm
II (NSGA II), which alleviates the three difficulties: compu-
tational complexity, nonelitism approach, and the need for
specifying a sharing parameter. The NSGA II was advanced
from its origin, NSGA. In NSGA II, a nondominated sorting
approach is used for each individual to create Pareto rank, and

a crowding distance assignment method is applied to imple-
ment density estimation. In a fitness assignment between two
individuals, NSGA II prefers the point with a lower rank
value, or the point located in a region with fewer numbers of
points if both of the points belong to the same front. There-
fore, by combining a fast nondominated sorting approach, an
elitism scheme and a parameterless sharing method with the
original NSGA, NSGA II claims to produce a better spread
of solutions in some testing problems.

Interactive adaptive-weight genetic algorithm
(i-AWGA: Gen et al. 2008): Gen et al. proposed an inter-
active adaptive-weight genetic algorithm (i-AWGA), which
is an improved adaptive-weight fitness assignment approach
with the consideration of the disadvantages of weighted-sum
approach and Pareto ranking-based approach. They com-
bined a penalty term to the fitness value for all of domi-
nated solutions. Firstly, calculate the adaptive weight wi =
1/(zmax

i − zmin
i ) for each objective i = 1, 2. . . q by using

AWGA. Afterwards, calculate the penalty term p(vk) = 0,
if vk is nondominated solution in the nondominated set P .
Otherwise p(vk′) = 1 for dominated solution vk′ . Last, cal-
culate the fitness value of each chromosome by combining
the method as follows and we adopted roulette wheel selec-
tion as supplementary to the i-AWGA.

eval(vk)=
q∑

i=1

wi (z
k
i −zmin

i )+ p(vk), ∀k ∈ popSize (1)

Hybrid sampling strategy-based EA (HSS-EA: Zhang
et al. 2012a, b): Zhang et al. proposed a hybrid sampling
strategy-based evolutionary algorithm (HSS-EA). A Pareto
dominating and dominated relationship-based fitness func-
tion (PDDR-FF) is proposed to evaluate the individuals. The
PDDR-FF of an individual Si is calculated by the following
function:

eval(Si ) = q(Si ) + 1

p(Si ) + 1
, i = 1, 2, . . . , popSize

(2)

where p( ) is the number of individuals which can be dom-
inated by the individual S. q( ) is the number of individuals
which can dominate the individual S. The PDDR-FF can set
the obvious difference values between the nondominated and
dominated individuals (Fig. 2).

The sampling strategy of VEGA prefers the edge rather
than center regions of Pareto front that it causes VEGA can-
not achieve better distribution performance. So it is natural,
reasonable and possible to combine these two methods to
improve the overall performance and reduce the computa-
tion time of the algorithm. Figure 3 shows the description
of HSS-EA. The strong convergence capability of VEGA
and PDDR-FF ensures that the HSS-EA has the ability to
converge to the true Pareto front both in central and edge
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Fig. 2 The description of HSS-EA
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Fig. 3 Illustration of scheduling network with 3 job and 11 operations

regions. The preferences for the edge area of the Pareto front
in VEGA and the central area of the Pareto front in PDDR-FF
guarantee that the HSS-EA distributes along the Pareto front
evenly. Moreover, less computing time makes that HSS-EA
has higher efficiency than other approaches.

Evolutionary representation

How to present a solution of the scheduling problem into
a chromosome is a key issue for EAs. For evaluating the
effectiveness of the different chromosome representation,
there are several critical issues are summarized by Gen et
al. (2008)

• Space: Chromosomes should not require extravagant
amounts of memory.

• Time: The time complexities of evaluating, recombining,
and mutating chromosomes should be small.

• Feasibility: All chromosomes, particularly those gener-
ated by simple crossover (i.e., one-cut point crossover)
and mutation, should represent feasible solutions.

• Uniqueness: The mapping from chromosomes to solu-
tions (decoding) may belong to one of the following three
cases: 1-to-1 mapping, n-to-1 mapping and 1-to-n map-
ping. The 1-to-1 mapping is the best one among three
cases and 1-to-n mapping is the most undesired one.

• Heritability: Offspring of simple crossover (i.e., one-cut
point crossover) should represent solutions that combine
substructures of their parental solutions.

• Locality: A mutated chromosome should usually repre-
sent a solution similar to that of its parent.

We need to consider these critical issues carefully when
designing an appropriate representation so as to build
an effective EA. As known, scheduling problem is the
implement of production plan, with considering production
processes, lot-size, amount and customer requirements etc.
And scheduling problem is how to decide the resources
assignment to the production, with considering constrains
of resources capabilities and capacities. There are two deci-
sion making parts for scheduling optimization: (1) operation
sequencing and (2) resources assignment.

Representation for operation sequencing

In the past few decades, the following 6 representations for
job-shop scheduling problem (JSP, an operation sequencing
problem with considering the precedence constraints of oper-
ations) have been proposed:

• Operation-based representation (De Jong 1994)
• Job-based representation (Baker and Scudder 1990)
• Preference list-based representation (Croce et al. 1995)
• Priority rule-based representation (Dorndorf and Pesch

1995)
• Completion time-based representation (Yamada and

Nakano 1992)
• Random key-based representation (Norman and Bean

1995)

The Flexible Job-shop Scheduling Problem (FJSP) is
expanded from the traditional JSP, which possesses wider
availability of machines for all the operations (a combinato-
rial optimization problem considering both of the operation
sequence and the resource assignment). The following 4 rep-
resentations for FJSP have been proposed:

• Parallel machine-based representation (Gen and Cheng
1997)

• Parallel jobs representation (Gen and Cheng 1997)
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• Operations machines-based representation (Kacem et al.
2002a, b)

• Multistage operation-based representation (Zhang and
Gen 2006)

Permutation-based representation is perhaps the most nat-
ural representation of operation sequences. Unfortunately
because of the existence of precedence constraints, not all
the permutations of the operations define feasible sequences.
For job shop scheduling problem, Cheng et al. (1996, 1999)
applied job-based representation: they name all operations
for a job with the same symbol and then interpret them
according to the order of occurrence in the sequence of a
given chromosome. Gen and Zhang (2006) also applied this
representation to advanced scheduling problem. The job-
based representation can also be used to represent the oper-
ation sequences for the FJSP problem. Each job i appears
in the operation sequence exactly ni times to represent its
ni ordered operations. However, if the operation precedence
is more complex than JSP or extend JSP problems, the job-
based representation cannot be used directed.

Cheng and Gen (1994) proposed a priority-based rep-
resentation firstly for solving Resource-constrained Project
Scheduling Problem (rcPSP). This representation encodes a
schedule as a sequence of operations and each gene stands
for one operation. As known, a gene in a chromosome is
characterized by two factors: locus, i.e., the position of the
gene located within the structure of chromosome, and allele,
i.e., the value the gene takes. In this encoding method, the
position of a gene is used to represent operation ID and its
value is used to represent the priority of the operation for
constructing a schedule among candidates. A schedule can
be uniquely determined from this encoding.

Figure 3 presents a scheduling network with 3 jobs and
11 operations. Illustration of priority-based representation is
shown in Fig. 4. At the beginning, we try to find an opera-
tion for the position next to source node S. Operations 1, 5,
8 and 10 are eligible for the position, which can be easily
fixed according to adjacent relation among operations. The
priorities of them are 10, 5, 8 and 1, respectively. Operation
1 has the highest priority and is put into the schedule. The
possible operations next to operation 1 are operations 2 and
3, and possible operations 5, 8 and 10. Because operation 3
has the largest priority value, it is put into the schedule. Then
we form the set of operations available for next position and
select the one with the highest priority among them. Repeat
these steps until we obtain all operations into the schedule,
(N1−N3−N8−N5−N6−N2−N4−N7−N9−N10−N11).

locus 1 2 3 4 5 6 7 8 9 10 11

allele 10 4 9 5 7 11 3 8 2 1 6

Fig. 4 Illustration of priority-based representation

locus 1 2 3 4 5 6 7 8 9 10 11

allele 0.10 0.04 0.09 0.05 0.07 0.11 0.03 0.08 0.02 0.01 0.06

Fig. 5 Illustration of random key-based representation

However, the nature of the priority-based representa-
tion is a kind of permutation representations. Generally,
this representation will yield illegal offspring when using
one-cut point crossover or other simple crossover oper-
ators. That means some node’s priority may be dupli-
cated in the offspring. There are several crossover operators
proposed for permutation representation, such as partial-
mapped crossover (PMX), order crossover (OX), position-
based crossover (PX), heuristic crossover, and so on (Gen et
al. 2008). Norman and Bean (1995) proposed random key-
based representation for JSP. In this paper, we combine the
random key-based representation for operations sequencing.
The example of representation is shown in Fig. 5, and we
can obtain the same operations sequence into the schedule,
(N1−N3−N8−N5−N6−N2−N4−N7−N9−N10−N11).

Representation for resources assignment

After the operation sequence is fixed, the resources assign-
ment can be formulated as a multi-stage graph problem. For
each stage (operation), we decided the state number (which
resource should be assigned). This multi-stage graph prob-
lem can be solved by dynamic programing. Yang (2001) pro-
posed a GA-based discrete dynamic programming approach
for scheduling in FMS environment. However, the IPPS prob-
lem is the combination of the operation sequencing (NP-hard
problem) and resources assignment. Considering the com-
putation times of the algorithm, and the most of practical
IPPS problems are multi-resources assignment, the most of
researches combined a state permutation representation into
the chromosome (Okamoto et al. 2005; Gao et al. 2008; Gen
et al. 2009), called multi-stage representation.

For each resource type h, generate a chromosome section
by using this state permutation representation. In this repre-
sentation, the position of a gene is used to represent operation
ID, and its value is used to represent the resource id selected.
The maximum value is equal to the number of resources |Rh |
of resource type h. In this paper, we use the real number in
the state permutation representation.

For example, Fig. 6 presents resource Rh (machine)
assignment for 11 operations. The number of resources |Rh |
is equal to 4. In particular, the operation N3 is only achiev-
able on a part of the available machines M2 and M4. And
the operation N4 is only achievable on a part of the available
machines M2, M3 and M4. Illustration of permutation rep-
resentation is shown in Fig. 7. As the decoding process, we
assign the machine Mu to operation j by using the following
equation:
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Fig. 6 Illustration of resource
Rh (machine) assignment M1

M2

M3

M4

S T

M1

M2

M3

M4

M1

M2

M3

M4

M1

M2

M3

M4

M1

M2

M3

M4

N1 N2 N3 N4 N11

locus 1 2 3 4 5 6 7 8 9 10 11

allele 0.56 0.36 0.78 0.23 0.34 0.70 0.50 0.41 0.85 0.15 0.32

Fig. 7 Illustration of permutation representation

u′ = FIX(v j · U
′
j ) (3)

where v j is the value of the j th gene; U j ’ is the number
of available machines for operation j ; FIX(x) rounds the
elements of x to the nearest integers towards zero.

Hybrid evolutionary operations

There are many situations in which the simple EA does not
perform particularly well, and various methods of hybridiza-
tion have been proposed. One of most common forms of
hybrid EA is to incorporate local optimization approach as
an add-on extra to the canonical EA loop of evolutionary
operations, such as recombination and selection etc. With
the hybrid approach, local optimization is applied to each
newly generated offspring to move it to a local optimum
before injecting it into the population. EA is used to per-
form global exploration among a population while heuristic
methods are used to perform local exploitation around chro-
mosomes. Because of the complementary properties of EA
and conventional heuristics, the hybrid approach often out-
performs either method operating alone.

Bottleneck shifting

Gao et al. (2008) proposed a hybrid genetic algorithm for the
flexible job shop scheduling problem (FJSP), by using effec-
tive evolutionary operation, called bottleneck shifting. As
shown in Fig. 8, a feasible operation sequencing of schedul-
ing can be represented with disjunctive graph G = (N , A),
with operations set N , operation sequence set A. In Fig. 8, the
number above each node represents the processing time of
that operation. The critical path is the longest path in a graph.
The makespan is equal to the length of the critical path in the

corresponding disjunctive graph. The critical path is high-
lighted with broad-brush arcs in Fig. 8. Any operation on the
critical path is called a critical operation. A critical operation
cannot be delayed without increasing the makespan of the
schedule.

A improved schedule which is slightly different from the
initial solution can be generated by changing the processing
sequence of two adjacent operations performed on the same
machine, i.e., reversing the direction of the disjunctive arc
that links the two operations. The makespan of a schedule
is defined by the length of its critical path, in other words,
the makespan is no shorter than any possible path in the
disjunctive graph. Only when these two adjacent operations
are on the critical path, the new solution is possible to be
superior to the old one. As shown in Fig. 9, the makespan is
improved by swap operations 3 and 5 on critical path.

GA+PSO

In Particle Swarm Optimization (PSO), the representation
code is called particle swarm, and each allele is called a par-
ticle. The evolutionary operation of PSO is that particle fly
through the problem space by following the current optimum
particles. In each iteration t , the algorithm updates positions
(xt

i ) and velocities (vt
i ) of the particle i as follows:

vt
i = ωvt−1

i + φ1

(
gi − xt−1

i

)
+ φ2

(
lt−1
i − xt−1

i

)
(4)

xt
i = xt−1

i + vt
i (5)

with φ1 = r1ag, φ2 = r2al , r1 and r2 ∼ U (0, 1) , ω, al ,

ag ∈ R. lt−1
i is the best position found so far by the i-1th

particle and gi is the global best position on the particle i . Guo
et al. (2006, 2009) proposed PSO algorithms for integrated
process planning and scheduling problems.

Lin et al. (2012) proposed a hybrid evolutionary operation
by combining GA and PSO. They combine the evolutionary
operation of PSO as a special crossover of GA.

In PSO, the particle is replaced by Eq. (5) in each iter-
ation t . Different with the operation of PSO, the GA+PSO
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(a) 

(b)

Fig. 8 Illustration of disjunctive graph. a A feasible solution based on evolutionary representation (Fig. 5 + Fig. 7), b Gantt chart

Fig. 9 Illustration of improved solution by bottleneck shifting operation

operation replace the chromosome if the generated chromo-
some is better than the original chromosome. The evolution-
ary operation process is shown as following steps:

Step 1: Calculate velocities (vt
i ) for each gene i in the chro-

mosome j in generation t .

vt
i j = ωvt−1

i j + φ1

(
gi − xt−1

i j

)
+ φ2

(
lt−1
i j − xt−1

i j

)
, ∀i, j

(6)

where ω, al , ag are parameters of the algorithm,
φ1 = r1ag, φ2 = r2al , r1 and r2 are random num-
bers between (0, 1). gi is the value of gene i in the
best chromosome, and lt

i j is the value of gene i in
the best chromosome j in generation t .

Step 2: Generate a new chromosome j ′ with calculating
each gene i in generation t by following equation:

xt
i j ′ = xt

i j + vt
i j , ∀i, j (7)

Step 3: Evaluate the fitness fit j ′ of the chromosome j ′; if the
fitness fit j ′ is better than the fitness fit j of chromo-
some j , replace the chromosome j by vt

j = [vt
i j ′ ]I .

Scheduling formulations and EAs

As discussed above, manufacturing scheduling problem is
how to decide the resources assignment to the production,
considering constrains of resources capabilities and capaci-
ties; and is the implement of production plan, with consid-
ering production processes, lot-size, amount and customer
requirements etc.

The notations of scheduling problem are shown as follows:
Indies:

i ∈ I job ID
j ∈ J operation ID
l ∈ L material ID
k ∈ K material type ID
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h ∈ H resource ID
u ∈ U resource type ID

Parameters:
Material definitions

M = {Ml} material set
Ml = {AM

k , T M
k } {material attribute, constraint}

Resource definitions

R = {Ru} resource set
Ru = {AR

u , T R
u } {resource attribute, constraint}

Operation definitions

N j = {tS
j , tT

j , p j , C I
j , CE

j } operation j

tS
j starting time of operation j

tT
j ending time of operation j

p j processing time of operation j
C I

j = {M j , R j } import of operation j

CE
j = {M j ′, R j } export of operation j

R jh = {Ah
ju, T h

ju} {resource attribute, constraint}
of operation j

Operations relationship

E j j ′ = {(N j , N j ′)} precedence constraint of operation j
and operation j ′

tL
j j ′ shipment time from operation j to

operation j ′
t I

j j ′ idle time from operation j to operation
j ′

Decision variables:

Xi = {x jh} operation resource assign-
ment for each job i

Z j j ′ = {z j j ′h} movement resource assi-
gnment between operation
j and operation j ′

Y j j ′ = {y j j ′ } = {(0, 1)}, ∀ j, j ′ 0 or 1, precedence of oper-
ation j and operation j ′

As shown in Fig. 10, for each operation N j , resources
requirement {Rh}, start time of operation j tS

j , end time of

operation j tT
j , processing time of operation j p j , import of

operation j C I
j = {M j , R j }, and export of operation j C E

j =
{M j ′, R j } are assigned on the operation.

As shown in Fig. 11, a job can be defined as a sub-graph. In
the sub-graph, (1) the directed arc is presenting the operations

Nj

{tj
S, tj

T, pj,}

{Rh}

Cj
I Cj

E

Fig. 10 Illustration of operation N j

N1 N2 N3S T

Job Gi = (Ni, Ei)

E12 E23

E1 = {Ejj, tjj’
L, tjj’

I}

t12
L, t12

I

Fig. 11 Illustration of sub-graph Gi for job i

precedence E j j ′ for the product; (2) The variables on the
arc are presenting the shipment time tL

j j ′ , idle time t I
j j ′ and

other specialized definitions between operations. Job i can
be presented as a sub-graph Gi :

Gi = (Ni , Ei ) sub-graph of job i
Ni = {N j } operations set for completing job i
Ei = {E j j ′, tL

j j ′, t I
j j ′ } arc set from operation j to operation

j ′

A set of jobs can be defined as a directed graph G = {Gi }.
G included all of jobs (with considering lot-size, amount etc.)
manufactured. The notation of scheduling graph is shown as
following:

G = {Gi } scheduling network

The objectives of scheduling problems can be classified
as operation sequencing problems, operations (or shipments)
selection problems, resources assignment problems, opera-
tions (or shipments) grouping problems. The objective func-
tions are (1) minimization/maximization of resource parame-
ters (e.g., operation cost), or (2) minimization/maximization
of operations parameters (e.g., makespan), (3) minimiza-
tion/maximization of arc resource parameters (e.g., trans-
portation cost). Sometimes, the special scheduling prob-
lems are considering the operation grouping problems (e.g.,
resources balancing problem). This paper does not consider
the operation grouping problems.

Objective functions:

min/max f1 (Rh, Xi ) (8)

min/max f2
(

p j , Y j j ′
)

(9)

min/max f3
(
E j j ′ , Z j j ′

)
(10)
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System constraints:

g1
(
N j , Y j j ′

) ≥ 0 (11)

g2
(
E j j ′, Y j j ′

) ≥ 0 (12)

g3 (Rh, Xi ) ≥ 0 (13)

g4
(
Rh, Z j j ′

) ≥ 0 (14)

Non-negative constraints:

Xi = {
x jh

} ≥ 0,∀i (15)

Y j j ′ = {
y j j ′

} = {(0, 1)} ,∀ j (16)

Z j j ′ = {
x jh

} ≥ 0,∀ j (17)

The constraints of scheduling problems can be classi-
fied as operation precedence constraints, shipments prece-
dence constraints, and resources of operations (or shipments)
capacity constraints. Therefore, the scheduling problems
should consider the (11) operation precedence constraints,
(12) the shipment precedent constraints, (13) resource usabil-
ity constraints, and (14) shipment resource usability con-
straints.

Job shop scheduling

The job shop scheduling problem (JSP) is one of the typ-
ical scheduling problems, concerning determination of the
operation sequences so that the makespan is minimized. It
consists of several assumptions as follows:

A1. Every machine processes only one operation at a time.
A2. The execution of each operation requires one machine

selected from a set of available machines for the oper-
ation.

A3. The operation sequence of a job is prespecified.
A4. The operations are not preemptable, that is, once an

operation has started it cannot be stopped until it has
finished.

A5. The set-up times for the operations are sequence-
independent and are included in the processing times.

A6. The problem is to assign each operation to an available
machine and sequence the operations assigned on each
machine in order to minimize the makespan, that is, the
time required to complete all jobs.

The problem could be described as an n-job m-machine
scheduling problem by simple equations as follows:

min tM = max
j

{
t T

j

}
(18)

s. t. t T
j ′ − p j ′ ≥ t T

j , ∀
{

j, j ′
∣
∣
∣E j j ′ = 1

}
(19)

t T
j ≥ 0, ∀ j (20)

The objective function by Eq. (18) is to minimize the
makespan. The constraint by Eq. (19) is the operation prece-

dence constraint, the j ′th operation should be started after
the j th operation finished in the same job.

Hybrid EA for JSP

The P(t) and C(t) are parents and offspring respectively in
current generation t , the implementation structure of hybrid
EA (HEA) for scheduling is described as follows:

procedure: HEA for JSP

input: scheduling data (N, E), HEA parameters

output: the best solution S

begin

t 0;

initialize operation sequence section P(t ) by random key-based encoding routine; 

evaluate P(t ) by decoding routine with eval(P) and keep the best solution; 

while (not terminating condition) do

create (t) from P (t ) by GA+PSO routine; 

replace  if eval ( ) < eval ( ) for all and ; 

create C(t ) from P(t) by one-cut chromosome routine; 

evaluate P(t ) by decoding routine with eval(P ) and update the best solution; 

select P(t+1) from P(t ) and C(t ) by roulette wheel selection routine; 

t t+1;

end 

output a schedule S by the best solution

end; 

vj vj’ vj’←

←

vj vj’  ∈P’(t) vj ∈ P(t)

P’

←

Experimental comparisons

By using HEA, random key-based section (operation sequ-
encing) is considered. We combine HEA with 3 EAs to solve
JSP. A random key-based GA (rkGA) is proposed by Norman
and Bean (1995), a priority-based GA (priGA) is proposed by
Zhang and Gen (2006), a random key-based PSO (rkPSO) is
proposed by Guo et al. (2009). We used Ta31-Ta70 well-
known benchmarks of JSP from OR-Library. All of tests
are conducted 30 runs on a machine running on Intel Xeon
2.00 GHz CPU and 4 GB of memory. Table 1 summarizes
the experimental results. The result clearly indicates that
all of results by HEA are better than each of the other EA
approaches.

Multiobjective flexible JSP

Flexible job shop scheduling (FJSP) is a generalization of
the job shop and the parallel machine environment (Pinedo
2002), which provides a closer approximation to a wide range
of real manufacturing systems. In particular, there is a set
of parallel machines with possibly different efficiency. The
FJSP allows an operation to be performed by any machine
in a work center. This presents two problems. The first one
is the assignment of operations to machines, and the second
one is the operations sequencing problem (i.e., determining
the starting time of each operation). The FJSP is NP-hard
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Table 1 Performance comparisons with different EAs by 20 JSP tests

Problem Size rkGA priGA rkPSO HEA

ta31 30 × 15 1,819 1,780 1,849 1,776

ta32 30 × 15 1,859 1,823 1,872 1,823

ta33 30 × 15 1,848 1,811 1,864 1,811

ta34 30 × 15 1,876 1,850 1,906 1,842

ta35 30 × 15 2,063 2,021 2,080 2,022

ta51 50 × 15 2,815 2,789 2,827 2,788

ta52 50 × 15 2,797 2,797 2,816 2,787

ta53 50 × 15 2,770 2,733 2,795 2,723

ta54 50 × 15 2,896 2,877 2,922 2,867

ta55 50 × 15 2,744 2,697 2,774 2,692

ta61 50 × 20 2,914 2,888 2,927 2,880

ta62 50 × 20 2,923 2,894 2,947 2,886

ta63 50 × 20 2,796 2,777 2,819 2,769

ta64 50 × 20 2,764 2,725 2,774 2,724

ta65 50 × 20 2,774 2,737 2,796 2,735

ta66 50 × 20 2,885 2,877 2,913 2,871

ta67 50 × 20 2,866 2,842 2,891 2,840

ta68 50 × 20 2,832 2,805 2853 2,806

ta69 50 × 20 3,139 3,094 3,151 3,092

ta70 50 × 20 3,040 3,015 3,058 3,008

rkGA random key based GA, priGA priority based GA, rkPPS random
key based PSO, HEA hybrid EA

since it is an extension of the job shop scheduling problem
(Garey et al. 1976).

The FJSP problem could be described as an n-job
m-machine scheduling problem by simple equations as fol-
lows:

min tM = max
j

{
t T

j

}
(21)

min WM = max
h

{Wh} (22)

min WT =
∑

h

Wh (23)

where Wh =
∑

j

p j · x jh

s. t. t T
j ′ − p j ′ ≥ t T

j , ∀
{

j, j ′
∣
∣
∣E j j ′ = 1

}
(24)

∑

h

(
x jh · T h

ju

)
= 1, ∀h (25)

t T
j ≥ 0, ∀ j (26)

x jh = {0, 1} , ∀ j, h (27)

The objective functions accounts Eq. (21) is to minimize
the makespan, Eq. (22) is to minimize the maximal machine
workload (i.e., the maximum working time spent at any
machine), Eq. (23) is to minimize the total workload (i.e.,
the total working time over all machines). Eq. (24) states that
the successive operation has to be started after the completion

of its precedent operation of the same job, which represents
the operation precedence constraints. Eq. (25) states that one
machine must be selected for each operation.

Hybrid GA for FJSP

The P(t) and C(t) are parents and offspring respectively in
current generation t , the implementation structure of hGA
for scheduling is described as follows:

Experimental comparisons

In order to test the effectiveness and performance of EAs,
three representative instances (represented by problem n×m)
were selected for simulation. The works by (Kacem et al.
2002a), (Xia and Wu 2005), and (Gen et al. 2008) are among
the most recent progresses made in the area of FJSP. All
the simulation experiments were performed with Delphi on
Pentium 4 processor (2.6-GHz clock).

Table 2 gives the performance of EAs. “Approach by
Localization” and “AL+CGA” are two algorithms by Kacem

Table 2 Performance of multiobjective EAs for the 3 FJSP problems

Problem Classical GA AL+CGA PSO+SA HGA

8 × 8 tM 16 15 16 15 16 15

wM 12 13 12

wT 77 79 75 75 73 75

10 × 10 tM 7 7 7 7

wM 7 5 6 5

wT 53 45 44 43

15 × 10 tM 23 24 12 11

wM 11 11 11 11

wT 95 91 91 91
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et al. (2002a, b). “PSO+SA” is the algorithm by Xia and Wu
(2005), and “HGA” is proposed by Gen et al. (2009).

AGV dispatching in FMS

Flexible manufacturing system (FMS) is a machinery man-
ufacturing system controlled by a unified information sys-
tem, material-handling system and a set of numerical control
processing equipment components. It is able to use evolution-
ary computation technology to optimize production schedul-
ing, rapidly adjust resource allocation, improve equipment
utilization, and co-ordinating arrangements for the produc-
tion schedule. On the other hand, an automated material
handling is significant to integrated manufacturing, so it
also should be considered during solving optimal schedul-
ing problem. The state-of-art AGV is one of the automated
material-handling systems (AMHS), but it is often used to
facilitate automatic storage and retrieval system (AS/RS). So
the AGV is rarely a material-handling system in the FMS.

In this field, many researchers have studied for decades
to show the fact that evolutionary computation algorithms
have been demonstrated to be suitable for the optimization
in the FMS. For instance, recently Choudhury et al. (2009)
tried to find appropriate GAs for planning & scheduling in
batch mode. Zhao et al. (2011) used an effective Petri net
modeling with GA and real-time modeling to solve Schedul-
ing optimization problem. Wang et al. (2008) employed a
hybrid algorithm of PSO and SA to solve optimal solution.
Considering AGV, Song et al. (2008) came up with an AGV
Dispatching Strategy based on theory of constraints (TOC)
that can make bottleneck machine work fully without starva-
tion and blocking. Vis (2006) give a survey of research in the
design and control of AGV systems. Lin et al. (2006) pre-
sented the decision variables and system constraints of AGVs
on the network. Let G = (V, E) be a connected directed net-
work with n = |V | nodes and m = |E | edges, nodes represent
the tasks that transport the material from a pickup point to a
delivery point. After the network structure is generated, all
of the system constraints are included.

Assumptions are showed as follows:

A1. AGVs only carry one kind of products at same time.
A2. A network of guide paths is defined advance, and

the guide paths have to through all of pickup/delivery
points.

A3. The vehicles are assumed to travel at a constant speed.
A4. The vehicles just can travel forward, not backward.
A5. As many vehicles travel on the guide path simultane-

ously, collisions be avoided by hardware, not be con-
sidered in this paper.

A6. On each working stations, there are pickup space for
store the operated material and delivery space for store
the material for next operation.

A7. The operation can be started any time after an AGV
take the material to come. And also the AGV can trans-
port the operated material form the pickup point to next
delivery point any time.

min tM = max j

{
t T

j + t L
j j ′

}
(28)

min n AGV = max j, j ′
{
z j j ′

}
(29)

s. t. t T
j ′ − p j ′ ≥ t T

j + t L
j j ′ · min

(
1, z j j ′

)
,

∀
{

j, j ′
∣
∣
∣E j j ′ = 1

}
(30)

∑

h

(
x jh · T h

ju

)
= 1, ∀h (31)

t T
a + t L

aj · min
(
1, zaj

) ≤ t T
j ′ ′ ,

∀
{

j, j ′′
∣
∣
∣z ja = z j ′′a, ∀a

}
(32)

t T
j ≥ 0, ∀ j (33)

x jh = {0, 1} , ∀ j, h (34)

z j j ′ ≥ 0, ∀ j (35)

The objective functions accounts Eq. (28) is to mini-
mize the time for completing all the tasks (i.e. makespan),
Eq. (29) is to minimize the number of AGVs. In Eqs. (30)
and (32), since one or the other constraint must be hold,
it is called disjunctive constraint. It represents the opera-
tion un-overlapping constraint (Eq. 30) and the AGV non-
overlapping constraint (Eq. 32).

Hybrid EA for AGV dispatching

AGV dispatching is a combination of AGV assignment and
task sequencing. A solution can be described by the assign-
ment of task on AGVs, and the task sequence that transports
the material from a pickup point to a delivery point. Liang et
al. (2012) proposed a random key-based hybrid EA for AGV
dispatching. As we know, the real number can be separated
with integer and decimal. We consider the part of integer
decides AGV assignment, and consider the part of decimal
gives the priority of each task. The detailed encoding and
decoding processes are separate into following phases:

Phase 1: Random Key-based Encoding Process
Phase 2: Grouping Process (AGV Assignment)

2-1 Extraction of Integer Part
2-2 AGV Assignment

Phase 3: Task Sequencing Growth Process
3-1 Extraction of Decimal Part
3-2 Task Sequencing

The P(t) and C(t) are parents and offspring respec-
tively in current generation t , the implementation structure
of hybrid EA (HEA) for scheduling is described as follows:
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Experimental comparisons

For evaluating the efficiency of the AGV dispatching algo-
rithm suggested in a case study, a simulation program was
developed by using Java on Pentium 4 processor (3.2-GHz
clock). The problem was used by Yang (2001) and Kim et al.
(2004). In a case study of FMS, 10 jobs are to be scheduled
on 5 machines. The maximum number process for the oper-
ations is 4. Depend on Naso and Turchiano (2005), a layout
of facility is given for the experiment in Fig. 12.

We combine HEA with GA to solve AGV dispatching.
A priority-based GA (priGA) is proposed by Lin et al.
(2006). GA parameter settings were taken as follows: pop-
ulation size, popSize = 20; crossover probability, pC =
0.70; mutation probability, pM = 0.50. The HEA para-
meter settings were taken as follows: population size, pop-
Size=10; crossover probability, pC = 0.02; mutation prob-
ability, pM = 0.02; the velocity of advance xi towards
ppbest with velocity V1 = c1 = 0.6; V2 = c2 = 0.4.;
the velocity of Advance xi towards pgbest with velocity
V2 = c2.

M1

M2
M4

M5

Loading / 
Unloading

D

P P

P

P

P

D

D

DD

M3

DP

Fig. 12 Layout of facility (P: Pickup Point, D: Delivery Point)

Table 3 Experimental result summary

# of AGVs priGA HEA

Best Worst Average Best Worst Average

4 590 636 614.5 574 602 581.8

5 524 561 541.0 512 543 524.5

The experimental results for 4 AGVs and 5 AGVs used
are summarized in Table 3. Figure 13 gives the Gantt chart
of the schedule with considering AGVs routing using 4
AGVs.

Advanced planning and scheduling

The advanced planning and scheduling (APS) problem
includes finding the optimal resource selection for opera-
tions, operations sequences, allocation of variable transfer
batches, and schedules considering flexible flows, resources
status, capacities of plants, precedence constraints, and work-
load balance. We find the process has been driven since the
orders come from our customer. Moreover, to satisfy the
requirements, some other constraints should be considered
such as due date, setup time and shipping time. An inte-
grated process planning and scheduling (IPPS) problem is
proposed by Kim et al. (2003). Process planning is the deter-
mination of operations (machines, tools, and tool access
directions) and their operation sequences for manufactur-
ing are effective and economical partly. All the manufac-
turing resources are assumed as available in this phase. The
scheduling is determination of the most appropriate moment
to execute each operation in the shop over time with com-
petitive resources. Figure 14 present two kinds of materi-
als to be machined in a manufacturing system with the lot
sizes 40 and 50 orders by the customer. Concretely, 10 vol-
umes should be removed from two materials for obtain-
ing the final two products. All the manufacturing plans of
this example are offered in Table 4, which includes all the
types of operations and the corresponding machines and tools
selection.

The IPPS subjects to the following assumptions:

A1. Each machine can only handle one operation at each
time.

A2. Each operation will be completed before another oper-
ation will be loaded.

A3. The sequence of the operations of each part complies
with manufacturing constraints.

A4. All parts, machines and tools are available at time zero
simultaneously.

A5. Each operation is performed on a single machine,
and each machine can only execute an operation at a
time.
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Fig. 13 Gantt chart of the
schedule with considering
AGVs routing
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O21 O12 O64 O52 O43 O44

O11 O22 O63 O102 O13 O71 O93

time t

tMS=574

M5

M4

M1

M2

M3

Order 1 Order 2

o11
o13

o12

o14
o15

o21

o23

o22
o24

o25

Product 1 Product 2

Fig. 14 A simple example for IPPS

A6. The time for a set-up is identical and independent of
specific operations. The time for a machine change or
a tool change follows the same value.

A7. Machines are continuously available for production.

min tM = max j

{
t T

j

}
(36)

min WP =
√

1

T R
1

∑T R
1

h=1
Wh (37)

where Wh =
∑

j
p j · x jh

s. t. t T
j ′ − p j ′ ≥ t T

j , ∀
{

j, j ′
∣
∣
∣E j j ′ = 1

}
(38)

∑

h

(
x1

jh · T h
j1

)
= 1, ∀h (39)

∑

h

(
x2

jh · T h
j2

)
= 1, ∀h (40)

t T
j ≥ 0, ∀ j (41)

x1
jh = {0, 1} , ∀ j, h (42)

x2
jh = {0, 1} , ∀ j, h (43)

Table 4 Operation information for 2 order case

Operation ID
(order, operation)

Operation type Machine
selection

Tool candidates

1 (1, o11) Milling M1, M4 T6, T9

2 (1, o12) Milling M1, M4 T9, T10

3 (1, o13) Drilling M1, M3, M5 T3

4 (1, o14) Milling M1 T1, T3

5 (1, o15) Drilling M2 T2

6 (2, o21) Milling M1, M2 T1, T3

7 (2, o22) Milling M1, M3 T1, T6

8 (2, o23) Milling M3, M5 T1

9 (2, o24) Drilling M1, M4, M5 T2, T3

10 (2, o25) Drilling M1, M2 T2

The objective functions accounts Eq. (36) is to mini-
mize makespan, Eq. (37) is to minimize workload vari-
ance, defined as standard deviation of workload of all the
machines. Equation (38) states that the successive opera-
tion has to be started after the completion of its prece-
dent operation. Equation (39) states that one machine
must be selected for each operation. Equation (40) states
that assignment of tool must be selected for each opera-
tion.

Hybrid EA for IPPS

The P(t) and C(t) are parents and offspring respectively in
current generation t , the implementation structure of HEA is
described as follows:
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Table 5 Performance comparisons with different EAs by 24 IPPS tests

Problem 1 2 3 4 5 6 7 8 9 10 11 12
# of Jobs 6 6 6 6 6 6 6 6 6 9 9 9

priGA 438.70 349.60 360.30 306.40 333.00 451.60 377.40 356.90 432.80 455.20 374.20 339.00

rkPSO 437.60 350.33 361.20 305.20 334.50 451.20 380.20 340.80 428.40 457.30 370.50 341.33

HEA 438.90 349.80 360.00 305.80 332.80 450.80 379.40 352.10 419.50 450.70 359.50 328.40

Problem 13 14 15 16 17 18 19 20 21 22 23 24
# of Jobs 9 9 9 12 12 12 12 12 12 15 15 18

priGA 455.40 395.50 444.60 472.10 437.50 391.70 447.40 440.50 482.60 521.80 497.00 564.80

rkPSO 450.33 398.20 440.50 468.72 435.50 385.66 440.50 435.50 473.40 513.60 487.50 560.40

HEA 436.80 378.80 424.20 447.60 412.50 370.40 410.80 420.00 454.33 494.50 451.50 520.60

vj vjvj’ vj’ vj’←  ∈ P’(t) vj ∈ P(t)

Experimental comparisons

To evaluate the effectiveness of random key-based repre-
sentation and GA+PSO evolutionary operation, we compare
HEA with a priority-based GA (priGA) which is proposed
by Zhang and Gen (2006), a random key-based PSO (rkPSO)
is proposed by Guo et al. (2009). We considered one objec-
tive of minimizing makespan, and generated 24 IPPS Tests
with different number of jobs. All of tests are conducted 30
runs on a machine running on Intel Xeon 2.00 GHz CPU
and 4 GB of memory. Table 5 summarizes the experimental
results. Although considering the small-scale problems, HEA
has the same performance with prGA and rkPSO, HEA has
a high performance for solving large scale IPPS problems.

In order to investigate the effectiveness of multiobjective
EAs to solve IPPS, HSS-EA was compared with GPSI-FF
proposed by Ho et al. (2004), NSGA-II, and SPEA2. A 4 parts
(each part having 20, 16, 14 and 7 operations, respectively)
problem was suggested by Li and McMahon (2007). Figure
15 shows the 50 % attainment surface by using HSS-MOEA,
GPSI-FFGA, NSGA-II and SPEA2 with 30 runs.

Fig. 15 50 % attainment surface by HSS-EA, GPSI-FFGA, NSGA-II
and SPEA2

Conclusion

In this paper, we summarized a classification of manufactur-
ing scheduling problems, and surveyed the design ways of
EAs for the different types of scheduling problems. Firstly,
we introduced multiobjective EA, and give fitness assign-
ment mechanism, performance measures for multiobjective
scheduling problems. Then we introduced how to design a
representation, and how to improve initialization by evolu-
tionary operators. We classified the scheduling problems as
operation sequencing problems, operations (or shipments)
selection problems, resources assignment problems, and
operations (or shipments) grouping problems. We introduced
the design ways to apply EAs to the different typical schedul-
ing problems, including job shop scheduling problem (JSP)
(operation sequencing), flexible JSP (operation sequencing
with resources assignment), AGV dispatching in FMS (ship-
ments grouping and assignment), integrated process plan-
ning and scheduling (operation sequencing with multiple
resources assignment). Through a variety of numerical exper-
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iments, we demonstrated the effectiveness of these EAs in the
widely applications of manufacturing scheduling problems.

This paper summarized the optimization of manufacturing
scheduling problems with different system constraints. As
future researches, we will have in-depth investigation and
research, analysis the impact of scheduling under the dif-
ferent environment, such as dynamic scheduling problems,
robust scheduling etc. We will also have in-depth research on
the convergence and stability of EAs to solve different types
of scheduling problem under different environments, and the
solution diversity for multiobjective scheduling problems.
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