NMHOPOPMALIUMOHHO-YIMNMPABNAOLWWUE CACTEMbDbI
PEAJIbHOI'O BPEMEHW

Jlekuuns 6:
lTpoyeccopst NYC PB

Kadenpa ACBK,
JlabopaTtopus BbluncnntenbHbix Komnnekcos
banawios B.B.

OrpaHunyeHunsa Ha npoueccopbl NYC PB

e TexHonorn4yeckme orpaHn4yeHus:

— BbIHY>XIEHHOE NPUMEHEHNE «rpyboro»
TEXHOJIOrMYECKOro NpoLecca

— XECTKME orpaHNYeHus no
SHEepronoTpebIeHNIO U TEMTOBLIAENEHUIO

e OTKYna bepyTcs OrpaH1UEHMS]

— Tp€6OBaHMe K YCTOMYNBOCTU K BHELLHUM
BO3AeNCTBUAM (M3Ny4eHne u T.n.)

— HEpa3BUTOCTb TEXHOIOMMYECKMX MPOLIECCOB
NMPOV3BOACTBA MUKPOCXEM

— 06Wwum NMMUT Ha 3HepronoTpedbnenmne NYC PB
— OrpaHUYeHHbIE BO3MOXXHOCTU TEMI00TBOAA

Implementation Alternatives

Performance
Power Efficiency

* FPGA (field-programmable gate arrays)

[coneratpurpose processors |
—

Application-specific integrated circuits (ASICs)

Flexibility

Energy Efficiency

1000
PS?.\?-;’
100 ”-—t;ﬂ’“‘u”
/__.-:.'."__,..., \;pGP*
P M:
10 """v
o i f 2
2 _o*la” A .- A
(o . Y,
o) i + ,.?" -
o 1 b * - +A,.’.,.’ St ot
1 o
. A WO-Te,
0.1 0 P @b
i %o +RISC
o |. 0
0.01 O e i 8 0
_-" + ® ASIC x cell
- 9 FPGA © MPU
0 A DSP + RISC
© Hugo De Man, 0.001

IMEC, Philips, 2007

1990
1995
2000
2005

2010

General purpose processors
|

specialization

General-purpose Processors

» High performance
* Highly optimized circuits and technology

= Use of parallelism
» superscalar: dynamic scheduling of instructions

« super-pipelining: instruction pipelining, branch prediction,
speculation

= complex memory hierarchy
» Not suited for real-time applications

= Execution times are highly unpredictable because of
intensive resource sharing and dynamic decisions

» Properties
= Good average performance for large application mix
= High power consumption

Basic Pentium® 111 Processor Misprediction Pipeline |

1
Fetch

2
Fetch

4 | s 6 , | 10
Decodcl Decode | Rename | ROBRd | Rdy/Sch | Dispatch | Exec

Basic Pentium®4 Processor Misprediction Pipeline
_—

2 a] a5 e
TCNxtIP | TC Fetch Drive Allos

-
o
L=l

10 11 1213 14 151617 18] 19 20
Sch | Sch | Sch Disp Disp| RF | RF | Ex |Flgs Br Ck Drive

-g
g

Buffer Allocation &

Register Rename

Instruction Queue (for |
critical fields of the uOps)

General Instroction Address
Memaory Instruction Address Queu

(queues register entries and latency
fickds of the vOps for scheduling)

Floating Point, MMX
Renamed Register File
12K entries of 128 bit

uOp Schedulers

FI" Move Scheduler.
(828 dependency matrix)

Parallel (Matrix) Schedaler
for the two double pumped ALL's

General Floating Po
Slow Integer Scheduler
(3x8 dependency malrix)

Load / Store uOp Schedul
(8x8 dependency matrix)

Load / Store Lincar Addn
Collision History Table

Integer Execution Core

(U

(2)

(K)}

“)
(5
(6)
n
(%)
9)

uOp Dispatch umt & Replay ©
Dispatches up to 6 uOps / eycle
Integer Renamed Reginter |

128 entrics of 32 bit ¢ 6 status (lags
12 read ports and six wrile ports

Databus switch & Dypasacs 0
from the Integer Register File
Flags, Wnite Back

Double Pumped ALU U
Double Pumpod ALL |

Load Address Generator Unit
Store Address Generator Lo
Load Buller (48 entres)

(10) Store Bufler (24 ontries)

Intel Pentium 4 Northwood

Execution Pipeline Start

Register Alias History Tables (2x120) Micro code Sequencer
Register Alas Tables uOp Quei Micro code ROM & Flasn

S RPN Y SR

Instruction Trace Cache Trace Cache Access.

next Address Predict

Trace Cachie Distributed Tag comparatorns
Fill Buffers 24 bat virtual Tags

R (et BN ol P

™/
T'race Cache Branch Predict
Table (BTB), 512 entries

Retum Stacks (2x16 cnines)

Trace Cache next Iy (2x)

- i Miscellancous Tag Data
oaling

Point

{\A_l-jil

\ 8 Y =

Instruction Decoder

Up 10 4 decoded uOps

(from max. one x86 istr/'cycle)

Instructions with more than four
" e — are handled by Micro Sequencer
Trace Cache LRU buis

Raw Instruction Bytes

— | Data TLB, 64 entry fully

! N . — oAl - associative, between threads

{ Y I dual ported (for loads and stores)

Floating
Poim

and
Inleger e

Instruction Fetch
from L2 cache and
Branch Prediction

Front End Braoch Pre
Tables (BTB), sharcd, 4096
entries in total

Instruction TLE's 2x04
: fully associative for 4k and AN
|] pages. In: Virtual address [31:12)
. Out: Physical address [35:12] +
(TN &

2 page level bits
LZ;Caclle S s

81T i

! Lina
" Emapler.
Bullirs

Front Side Bus Inter-
face, 400..800 MHz

ro— -

(11) ROB Reorder Huller Sxil ¢
(12) 8kByte Level | Data cache
four way set associative, IR/1W

(13) Summed Address Index docode and §
(14) Cache Line Read / Write Tmnsfctburlcn and
256 bit wide bus to and from 1.2 cache

April 19, 2003 www.chip-architect.com

General-purpose Processors

» Multicore Processors

= Potential of providing higher execution performance by
exploiting parallelism

» Especially useful in high-performance embedded systems,
e.g. autonomous driving
= Disadvantages and problems for embedded systems:

* |ncreased interference on shared resources such as buses and
shared caches

* Increased timing uncertainty
« Often, there is limited parallelism in embedded applications

Multicore Examples

Memory Controller

Shared L3 Cachelt - ’

‘,'. f
Reviewston

|
|

4 cores

10

Multicore Examples

:f,. SPARC SPAR
C'bre Core.
:JSPARC|SPARC
il :Core | Core.

k5
b
o
(1°)
ey
=
D
72

Oracle Sparc TS

11

System Specialization

» [he main difference between general purpose highest
volume microprocessors and embedded systems is
specialization.

» Specialization should respect flexibility

» application domain specific systems shall cover a class of
applications

= some flexibility is required to account for late changes,
debugging
» System analysis required

= |dentification of application properties which can be used for
specialization

» quantification of individual specialization effects

12

Example: Multimedia-Instructions

Multimedia instructions exploit that many registers, adders etc are
quite wide (32/64 bit), whereas most multimedia data types are
narrow (e.g. 8 bit per color, 16 bit per audio sample per channel)
& 2-8 values can be stored per register and added.

64 bits

64 bits

word 3

word 2

word 1

word 0

word 3

word 2

word 1

word 0

64 bits

—

word 3

word 2

word 1

word 0

boundaries.

+
/ 4 additions per instruction;

carry disabled at word

14

Example: Heterogeneous registers

Example (ADSP 210x):

P

+ D

AX] [AY X [WY
Address- [CAF 4 [MF]
registers ‘ 4—’
A0, A1, A2 ..
Address v + -
generation AR] E)
unit (AGU) (MR]

Different functionality of registers AR, AX, AY, AF,MX, MY, MF, MR

15

Example: Multiple memory banks or memories

lep])7
- Iw Yy : X >
AX] [AY WX] (WY
Address- [CAF I« [MF]
registers | ‘ ‘
A0, A1, A2 ..
+- /
Address v + -
generation E}Fj E)
unit (AGU) (MR]

Simplifies parallel fetches

16

Example: Address generation units

« Data memory can only be fetched

Example (ADSP 210x):

with address contained in register file
A, but its update can be done in

instruction l

Y?
address

register /T//;\

file A

data
memory

parallel with operation in main data
path (takes effectively 0 time).
» Register file A contains several
precomputed addresses A[il.
» There is another register file M that
modify ~ contains modification values M[j].
register
fleM « Possible updates:
M[j] := ‘immediate’
Ali] := A[i] £ M[j]
All]l =A[i] £ 1
All] :=A[i] £ ‘immediate’
Al[l] := ‘immediate’

17

Example: Modulo addressing

Modulo addressing: sliding window

Am++ =Am:=(Am+1) mod n
(implements ring or circular
buffer in memory)

o
x[t1-1]
X[t]: value X[t1]
accessed < Xx[t1-n+1]
at time t X[t1-n+2]
o

18

Application specific processors:
microcontrollers

19

Control Dominated Systems

» Reactive systems with event driven behavior

» Underlying semantics of system description (“input model
of computation”) typically (coupled) Finite State Machines

or Petri Nets

/O
51gnals
=—
/ output
signals
B S
output

signals

20

Microcontroller

» control-dominant applications

= supports process scheduling
and synchronization

= preemption (interrupt),
context switch
» short latency times

» low power consumption

» peripheral units often
iIntegrated

» Suited for real-time
applications

8051 core

SIECOS51 (Siemens)

21

Microcontroller as a System-on-Chip

processor 8K8 ROM
80C51 (87C552 8K8
—»| 15 - vector EPROM)-
— mterrupt 256 x 8 RAM
—» | timer 0 (16 bit) A/DC
—»| timer 1 (16 bit) 10 - bit
—> :
— 21]11265‘[2) PWM
—> 1
= UART
—»| watchdog (T3) I:C
parallel ports 1 through 5

¢ 80 88 00 4

IRIR AR 2

complete system

timers

[?C-bus and par./ser.
interfaces for communi-
cation

A/D converter

watchdog (SW activity
timeout): safety

on-chip memory

interrupt controller

Philips 83 C3552: 8 bit-8051 based microcontroller

22

Application specific processors:
DSP & VLIW

Data Dominated Systems

» Streaming oriented systems with mostly periodic
behavior

» Underlying semantics of input description e.qg. flow
graphs (“input model of computation”)

**T— ; 0 e 0 e T e
E]"i " B: buffer
2

» Application examples: signal processing, control
engineering

24

Digital Signal Processor

» optimized for data-flow applications

» Suited for simple control flow

» parallel hardware units (VLIW)

» Specialized instruction se
» high data throughput

» zero-overhead loops o
» Specialized memory
» Suited for real-time

applications

t Figure 2-1. TMS320C62x/C67x Block Diagram

Program RAM/cache
32-bit address

256-bit data

Data RAM

32-bit address
8-, 18-, 32-bitdata

EMIF 512K bits RAM

512K bits RAM

Program/data buses

. » | _Multichannel
(A T1/E1) buffered

Power management

'C6000 CPU core DMA
Program fetch | Control cr':af?\lrj'n:all
. isters
Instruction dispatch rogs or
Instruction decode Control EDMA
1 logic (18
Data path 1 Data path 2] channel)
[Aregister file | | [B registerfile || TeS! S
O - I Emulation J1
L 4 . 4 Y Y L 4 . L 4 Y
L1[S1[m1[D1] | [L2]52]M2[D2] | Interrupts Ex8
or
Host
port

JTAG test/
emulation
control

. 1 Multichannel
~A(T1/E1) buffered

serial port

serial port

AL
AL

Timer

PLL clock
{ generator

25

MAC (multiply & accumulate)

sum = 0.0;
for (i=0; i<N; i++)
sum = sum + al[il *b[i];

zero-overhead loop

(repeat next instruction N times)
LDF 0, RO

N
o RPTS N
MAC - Instruktion — MPYF3 *(ARO)++, *(AR1)++, RO

|| ADDF3 RO, R1, R1

TMS320C3x Assembler
(Texas Instruments)

26

Very Long Instruction Word (VLIW)

Key idea: detection of possible parallelism to be done by
compiler, not by hardware at run-time (inefficient).

VLIW: parallel operations (instructions) encoded in one long word
(instruction packet), each instruction controlling one functional
unit. E.g.:

= instruction packet =

instruction 1

instruction 2

instruction 3

instruction 4

v

!

v

v

floating point
unit

integer
unit

integer
unit

memory
unit

27

Explicit Parallelism Instruction Computers

The TMS320C62xx VLIW Processor as an example of EPIC:

31 031 031 031 031 031 031 O

o i1 1 o i1 g 0
Instr. Instr. Instr. Instr. Instr. Instr. Instr.
A B C D E F G
Cycle Instruction
1 A
2 B C D
3 E F G

28

DDR SDRAM

Example: NXP TriMedia TM1000

MAIN MEMORY

INTERFACE
o
o VIDEO IN QVCP/LCD & CCIR656, HD,
CCIR656 5 5 VGA., LCD,
o}
ordata T | § csjj——> @
z FAST GENERIC FAST GENERIC =
>
= PARALLEL IN PARALLEL OUT o}
125 audio AUDIO IN AUDIO OUT » 125 audio
SPDIF audio SPDIF IN SPDIF OUT » SPDIF audio
Ethernet 10/100 JTAG
MAC « 10 /100 MAC TRIMEDIA SW DEBUG >
27 MHz (== BOOT, RESET, CLOCKS VIDEO SCALER
XTAL =T . 2 AND DE-INTERLACER
12c - MISC /O, TIMERS, 2D DRAWING ENGINE
COUNTERS, & <«
GPIO SEMAPHORES
VLD COPROCESSOR
INSTR
ACH
TM3260 CACHE DVD DESCRAMBLER
CPU
DATA -
S PCI INTERFACE » PCUXIO bus
' MSED98

INTERNAL BUS

Programmable hardware: FPGA

FPGA - Basic Strucutre

» Logic Units Logi
» 1/O Units T
> Connections 1/0 block —

T

31

FPGA - Classification

» Granularity of logic units:

= Gate, tables, memory, functional blocks (ALU, control, data
path, processor)

» Communication network:
= Crossbar, hierarchical mesh, tree

» Reconfiguration:

* fixed at production time, once at design time, dynamic during
run-time

32

Floor-plan of VIRTEX Il FPGAs

!

Configurable Logic
Configurable Logic

/

Programmble |/Os

Digital clock manager

I/O Blocks

33

- - - TR T IOOIOOoTooy M T00D
T [] [] :::
_-— I:
—1
—
—
—
ll R Q|| » | |l=
i< [:dl{x ol H
—
—
—
- - —]
- [] [—
- - _ —
— - _ |
- —
—4
- =
~ - _ Tl-‘ —
= - — &L uuu
Block RAM Multiplier

Virtex _
Logic Cell

y

SOPIN —> I\| ‘CEE\Y
o | | D —> SOPOUT
Sgﬁgﬂl-gort YBMUX YB
ift-Reg —
I 2 | M8X0Y|
63 = a3 O
G2 —> A2
CJROM |
Wl = 1 WG4 D ﬁ GYMUX
G =Y
WG3 > WG3) D J o
wG2 — WG2 MC15 XORG <1 DY--!
WG > WG1 —l OFF
WS DI
CILATCH
ALTDIG > \l .
) G DYMUX D al—r—a
7;DMULTAND Prop Gelee ¥
—|BY CYOG CLK— CK
l:_ SR REV
BY D—E ._D T
L
SLICEWE[2:0] WSG SHIFTOUT SR
— WE[2:0) —DIG
WE
| CLK MUXCY
WSF ®)

CLK

SR

Shared between

x & y Registers

L

;

[© and source: Xilinx Inc.: Virtex-Il
Pro™ Platform FPGAs:
Functional Description, Sept.
2002, /lwww._xilinx.com]

34

Example Virtex-6

» Combination of flexibility (CLB’s), Integration and
performance (heterogeneity of hard-IP Blocks)

clock distribution logic (CLB)

interfaces
(PCI, high speed)

550K
Logic Cell

Device memory (RAM)

100000000w000000DE
100000006 00000008
(0000000M=0000000F
00000000 N000000DED

_ 0 00
DSP slice/m; T fast communication

goo
I

35

MAXIMUM CAPABILITY ‘ VIRTEX-7 FPGAS

Logic Cells
Block RAM

DSP Slices

Peak DSP Performance (symmetric FIR)
Transceiver Count

Peak Transceiver Speed

Peak Serial Bandwidth (full duplex)

PCI Express® Interface

Memory Interface

1/0 Pins

1,955K

85Mb

5,280

6,737 GMACS
96
28.05Gbps
2,784Gbps
Gen3 x8*

1,866Mbps

1,200

Virtex-6 CLB Slice

SAHI
__D—D gsm_o o Reset Type
OINIT1 — "
CouT —CE om0 o Sync/Async
n —{ S[Fi OFFILAT
| \
- = | - [DMX
: D p D
06 | 5 _ O
1 0 FF/LAT
05 DX O INIT1 ab—{—oDbDa
p ©CINITo
o CE B SALtO
I oSRHI — o
Mcat] ‘ j»D oSALO |~ — cK
; oiNT1T Qf— sp
—CE oINTo
—CK SR
_P — T ™
/ =\ l o CMUX
iz] —]
: D _
o e Oc
05 4 X ST
a
oi p oimo [=CQ
SRET
MC31 |—— R nSRHI o
—= _<D—D aSRLO < H™
—_— olNIT1 Q
—gﬁ aiNMo
— SR |
— T ™
L { > BMUX
iz —
: D / B
o8 | -y =
05 1 o FF/LAT
BX p GINTT o >80
ot |+ oINITo
CK L | | ce oSAHI
WEN MCa1 - iD*D “EEE& | ok n::Lo
B QINT1 o
L —CE niNTo
—CK &g
’—| | ™
A D] :[] 7/—_’:%‘ o AMUX
2
AB:1 [D— AB:A1 'I-—)D _l—/
— We:W1 A
1A
&) A
(=]
D anmo @ -
ck D L | | cc 0SAH
WEN MC31 — | L | ok B SRLO
AID—‘ | }j SR
o1
SR {} |
CED)
CLK > 4 ;“
| U
|—WEN
= CIN

36

Configurable System-On-Chip

Example:

Altera's SoC
FPGA integrates a
dual-core ARM
Cortex-A9
processor system
with a low power
FPGA fabrics

Gen2 x4 (hard)
2x 10/100/1000 Ethernet Memory bandwidth >170 Gbps Gen2 x8 (soft)
2xUSB 2.0 OTG

161 to 216 /IO

Processor/FPGA boot flexibility

eIl

oo] |
—

>12
Hard Processor System“ 28-nm FPGA |mer;pnmct

Upto#® x<06hps
Up to 30 x 6 Gbps

|
_ I

37

Application Specific Circuits (ASICS)

Custom-designed circuits necessary
= if ultimate speed or
= energy efficiency is the goal and
» large numbers can be sold.

Approach suffers from
* l]ong design times,

» Jack of flexibility
(changing standards) and

* high costs
(e.g. Mill. $ mask costs).

38

Power aware design &
scheduling

PCs: Problem: Power density increasing

Sun’s

vl Prescott: 90 W/cm?,
90 nm [c't 4/2004]
Hot plate Pentium Il ® processor
Pentium Il ® processor

Pentium Pro ® processor
Pentium ® processor

€i486

o~
£
o
wn
=
©
=

-l
=]

.50 Ip 0.7p 0.5p 0.35p 0.25p 0.18u 0.13u 0.1p 0.07p

Surpassed hot-plate power density in 0.5

Not too long to reach nuclear reactor

© Intel
M. Pollack,
Micro-32

PCs: Surpassed hot (kitchen) plate ...?
Why not use it?

Strictly
speaking,
energy is not
“‘consumed”,
but converted
from electrical
energy into
heat energy

*e http/iwww.phys.ncku.edu.tw/
ubgdor % ~htsu/humor/fry_egg.html

Implementation Alternatives

Performance
Power Efficiency

* FPGA (field-programmable gate arrays)

[coneratpurpose processors |
—

Application-specific integrated circuits (ASICs)

Flexibility

42

The Power/Flexibility Conflict

_ Operations/Watt
[IMOPS/mW]

DSP-ASIPs
uPs

poor design
techniques

Technology
1.0p 0.5u 0.25y4 0.13p 0.07u
Necessary to optimize HW and SW.
Use heterogeneous architectures.
Apply specialization techniques.

43

Power and Energy are Related

E:/Pmﬁ

E

t,

In many cases, faster execution also means less energy, but
the opposite may be true if power has to be increased to allow
faster execution.

44

Low Power vs. Low Energy

» Minimizing the power consumption is important for
» the design of the power supply
* the design of voltage regulators
* the dimensioning of interconnect

» cooling (short term cooling)

* high cost (estimated to be rising at $1 to $3 per Watt for heat
dissipation [Skadron et al. ISCA 2003])

* limited space
» Minimizing the energy consumption is important due to
= restricted availablility of energy (mobile systems)
* |imited battery capacities (only slowly improving)
= very high costs of energy (solar panels, in space)
* |ong lifetimes, low temperatures

Dynamic Voltage Scaling (DVS)

Power consumption of CMOS
circuits (ignoring leakage):
o \
P ~ OéCLinzd i

_____ /

Vaa :supply voltage

Qo . switching activity
Cr :load capacity
f . clock frequency

Delay for CMOS circuits:

Vid
(Vaa — Vr)?

T ~ (O

Vaa :supply voltage
Vr :threshold voltage
Vi < Vg

Decreasing V , reduces P quadratically (f constant).
The gate delay increases reciprocally with decreasing V, .
Maximal frequency f__, decreases linearly with decreasing V.

46

Potential for Energy Optimization: DVS

P ~ OfCLVdef
E ~ OéOLVdeft = OiCLVde (#CYCIQS)

Saving energy for a given task:

— Reduce the supply voltage V_,
— Reduce the number of cycles #cycles

47

Example: Voltage Scaling

50MH

5 50f 150
cr% | Maximum Clock Frequency
RS 140
>
® 30r 130
20t | Energy Consumption 120
10 ¢ | | | , {10
2.5 3.0 35 40 45 5.0
[Courtesy, Yasuura, 2000] Vdd

[ZHIA] Aouonbaij yoo1)

Use of Parallelism

:f""' EA E>

max

Lo

49

Use of Pipelining
i

EA

fmax

Lo

E ~ V3 (#cycles)

bp = %El

NS

Eo
V, /2 |
fg2 |/

==

50

VLIW Architectures

» Large degree of parallelism
* many computational units, (deeply) pipelined
» Simple hardware architecture

= explicit parallelism (parallel instruction set)

» parallelization is done offline (compiler)

-

instruction packet

e

instruction 1

instruction 2

instruction 3

instruction 4

y

¥

v

v

floating point
unit

integer
unit

integer
unit

memory
unit

o1

Spatial vs. Dynamic Voltage Management

Slow
Module [
1.3V 50MHz Standard
Modules
1.8V
100MHz

Not all components require
same performance.

Normal Mode
1.3V
50MHz

Required performance
may change over time

52

DVS Example: a) Complete task ASAP

Via [V] 50 4.0 25
Energy per cycle [nJ] 40 25 10
fmax [MHZ] 50 40 25
cycle time [ns] 20 25 40

Task that needs to execute 10° cycles within 25 seconds.

a) [V3 , 109 cycles@50 MHz E.= 109 x 40 x 109
52 =40 [J]
42 — deadline
252 I
| | 1 | =

5 10 15 20 25 t[s]

53

DVS Example: b) Two voltages

Vaia |V] 50 4.0 2.5

Energy per cycle [nJ] 40 25 10

,ﬁnax [MHZ] 50 40 25

cycle time [ns] 20 25 40

b) [V) 750M cycles @ 50 MHz + 250M cycles @ 25
5* E,= 750 105 x 40 x 10°
42 _ +250 106 x 10 x 10°°
| =32.5[J]
2.5% —
| | | =

5 10 15 20 25 t[s]

54

DVS Example: c) Optimal Voltage

C)

E.=10°x25x 109

Via |V] 50 4.0 2.5
Energy per cycle [nJ] 40 25 10
fmax [MHZ] 50 40 25
cycle time [ns] 20 25 40
V2
£—,2] _A 109 cycles@40 MHz =25 [J]
42
2.5% —
| | | I =

5 10 15 20 25 t[s]

55

DVS: Offline Scheduling on One Processor

» Let us model a set of independent tasks as follows:

= We suppose that atask v, e V
* requires c¢; computation time at normalized processor frequency 1
* arrives at time a;
 has (absolute) deadline constraint d,

» How do we schedule these tasks such that all these tasks
can be finished no later than their deadlines and the
energy consumption is minimized?

= YDS Algorithm from “A Scheduling Model for Reduce CPU

Energy”, Frances Yao, Alan Demers, and Scott Shenker, FOCS
1995.”

If possible, running at a constant frequency (voltage) minimizes the
energy consumption for dynamic voltage scaling.

56

YDS Algorithm for Offline Scheduling

1] :
2 R
I S
ettt
0 4 8 12 16

» Define intensity G([z, z‘]) in some time interval [z, Z]:

= average accumulated execution time of all tasks
that have arrival and deadline in [z, Z] relative to

the length of the interval z'-z

V'([2,2)]) ={vi €V : z2<a; < d; <2}

G(lz.7) = >

ci/(z' — 2)

v, €V'([2,2'])

0,8,2

w
]

10,14.6

12,17,2

57

YDS Algorithm for Offline Scheduling

» Step 1: Execute jobs in the interval with the highest intensity by using
the earliest-deadline first schedule and running at the intensity as the
frequency.

1] 5 3,65 |
4 | 263 |
(|)| :Iﬁll-lll[8llll1l2||l1l6l i time -

G([0,6]) = (5+3)/6=8/6, G([0,8]) = (5+3+2)/ (8-0) = 10/8, 10.14.6

G([0,14]) = (5+3+2+6+6)114=11/7, G([0,17]) = (5+3+2+6+6+2+2)/17=26/17

G([2, 6]) = (5+3)/(6—2):2| G([2,14]) = (5+3+6+6) / (14-2) = 5/3,

G([2,17]) = (5+3+6+6+2+2)115=24/15
(
(
(

G([3,6]) =5/3, G([3,14]) = (5+6+6)/(14-3) = 17/11, G([3,17])=(5+6+6+2+2)/14=21/14
G([6,14]) = 12/(14-6)=12/8, G([6,17]) = (6+6+2+2)/(17-6)=16/11
G([10,14]) = 6/4, G([10,17]) = 10/7, G([11,17]) = 4/6, G([12,17]) = 2/5

58

YDS Algorithm for Offline Scheduling

» Step 1: Execute jobs in the interval with the highest intensity by using
the earliest-deadline first schedule and running at the intensity as the

frequency.

48 12 16 time

I U I I
8 12 16

0,8,2

w
4

10,14,6

12,17,2

59

YDS Algorithm for Offline Scheduling

» Step 2: Adjust the arrival times and deadlines by excluding the
possibility to execute at the previous critical intervals.

5

6 |
| 6146 | | 2106 |
[e T 1T 1T T 1T 1T 11 time
0 4 8 12 16 10,146 | == | 6,106

12,17,2 8,13,2

et r et
0 4 8 12 16 time

YDS Algorithm for Offline Scheduling

» Step 3: Run the algorithm for the revised input again

>
>
b

6,10,6

>

T T T T T T T I T T T 1T T 1]
0 | 4 8 | 12 16 time

G([0,4])=2/4, G([0,10]) = 14/10, G([0,13])=18/13 8,13,2

| G([2,10])=12/8,|G([2,13]) = 16/11, G([6,10])=6/4
G([6,13])=10/7, G([7,13])=4/6, G([8,13])=4/5

5
I_!_HIIIIHHH’
8 12 16

0 4 time

YDS Algorithm for Offline Scheduling

» Step 3: Run the algorithm for the revised input again
» Step 4: Put pieces together

frequency 0,4

T 1T 1T 1T time
0 4 8 12 16 8.13.2

N

frequency
0,2,2 | >
3 7 |
time
0 4 8 12 16
V4 'z V3 Vy V5 Ve Vo

frequency 2 2 1 1.5 | 1.5 | 4/3 4/3

DVS: Online Scheduling on One Processor

1 frequency

16 time

4 8 12

» Continuously update to the best schedule for all arrived tasks

Time 0: task v; is executed at 2/8
Time 2: task v, arrives

« G([2,6]) = 74, G([2,8]) = 4.5/6=3/4 => execute v, at %
Time 3: task v, arrives

« G([3,6]) = (5+3-3/4)/3=29/12, G([3,8]) < G([3,6]) => execute v, and v, at 29/12
Time 6: task v, arrives

+ G([6,8]) = 1.5/2, G([6,14]) = 7.5/8 => execute v; and v, at 15/16
Time 10: task v; arrives

« (([10,14]) = 39/16 => execute v, and v at 39/16
Time 11 and Time 12

« The arrival of vg and v; does not change the critical interval
Time 14:

+ G([14,17]) = 4/3 => execute vz and v, at 4/3

0,8,2

10,14.,6

12,17,2

63

Remarks on YDS Algorithm

» Offline

* The algorithm guarantees the minimal energy consumption
while satisfying the timing constraints

= The time complexity is O(N°), where N is the number of tasks in
4

« Finding the critical interval can be done in O(N?)
* The number of iterations is at most N/
= Exercise:

» For periodic real-time tasks with deadline=period, running at
constant speed with 100% utilization under EDF has minimum
energy consumption while satisfying the timing constraints.

» Online

= Compared to the optimal offline solution, the on-line schedule
uses at most 27 times of the minimal energy consumption.

64

Dynamic Power Management (DPM)

saving states

Requires Hardware Support
Example: StrongARM SA1100

Dynamic Power management tries to assign optimal power

RUN: operational

IDLE: a SW routine may stop
the CPU when not in use,
while monitoring interrupts

SLEEP: Shutdown of on-chip
activity

400mW

-

10ps

RUN }

160ms
O0us 64mJ
1OHS 36HJ
4ud

[IDLE } 90us SLEEP

S0mW

opd 160|JW

65

Reduce Power According to Workload

application states

| | shut down wake up
- 1
busy ! waiting I busy
1 |
| |
4} : : '
Tbs

power states

To4: shutdown delay T,.- Wakeup delay

T,: time before shutdown

Desired: Shutdown only during long idle times
-> Tradeoff between savings and overhead

66

Cnacunbo 3a BHMMaHue!

68

