NMHOPOPMALIMOHHO-YIMNMPABNAOLWLUE CACTEMbDbI
PEAJIbHOI'O BPEMEHW

Jlekuma 3:
AnHamMmnyeckoe niaaHupoBaHNe BbIYUC/IEHHH
M OLY€HKa NMJIaHNpyeMocCcTHu — 2

Kadenpa ACBK,
JlabopaTtopus BblumncnntenbHbix Komnnekcos
banawlioB B.B.

Typical task structure

buffer

=—p <read data>

<process data>

<write datg>

buffer

<wait for next activation>

Activation modes

Periodic task (time driven) timer —— ’?

A task is automatically
activated by the kernel Task
at regular time intervals

Aperiodic task (event driven)

A task is activated upon event —
the arrival of an event
(interrupt or explicit activation)

Task
body

Periodic Task Scheduling

We have n periodic tasks: {T1 T2 ... Tn}

relative absolute
7, (Ci, Ti, Di) period deadline deadline d,,
T; D
[« -l

& e 1T el

1 1 j >

ri1 = O Tik dix Tik+l t

Goal

= Execute all tasks within their = @+ (k=1) T;
deadlines

= Verify feasibility before runtime dix = rix + D;

Fixed-Priority Scheduling (FPS)

This is the most widely used approach

Each task has a fixed, static, priority which is
computer pre-run-time

The runnable tasks are executed in the order
determined by their priority

In real-time systems, the “priority” of a task is
derived from its temporal requirements, not its
importance to the correct functioning of the system
or its integrity

Earliest Deadline First (EDF)

= The runnable tasks are executed in the order
determined by the absolute deadlines of the tasks

= The next task to run being the one with the
shortest (nearest) deadline

= Although it is usual to know the relative deadlines
of each task (e.g. 25ms after release), the absolute
deadlines are computed at run time and hence the
scheme is described as dynamic

EDF ¢

EDF vs. RM Schedule

)
T S [
0 6 9o 1 15 1

3 2

RM «

S
o] — | —
) o 3 6 9 12 15 18
)
T1
0 3 6 9 12 15 18
S ISy S
\ 0o 3 6 9} 12 15 18

deadline miss

Response Time Analysis
[Audsley, 1990]

e For each task T, compute the interference
due to higher priority tasks:

I, =) C,

D, <D,

e Compute its response time as
R, = G+

o Verifyif R, < D,

Computing the interference

T ‘ ”
0 R,
Interference of 1, on T; 7 = & C
in the interval [0, R,]: ik T k
k
i-1 [p |

Interference of high
priority tasks on T::

Response Time Equation

R =C + > R C.

ichp(| T,]

Where hp(i) is the set of tasks with priority higher than task |

Solve by forming a recurrence relationship:

w't=C. + > — IC,
jenp@iy| T.

The set of valuesw;, w;,w",...,W",..is monotonically non decreasing.
Whenw =w™" the solution to the equation has been found; w;
must not be greater that R (e.g. 0 orC,)

Critical sections

T, T
globlal
Wait(S) memory buffer Wait(S)
x =3 write int - read "
y=2; int y; b =y+2;
signal(s) ¢ = x+y:

signal(s)

T

Blocking on a semaphore

Ty

CS

CS

P =~ Py

A

13

%)

It seems that the maximum blocking
time for t1 i1s equal to the length of the
critical section of t2, but ...

Priority Inversion

priority ‘ A
—_—
A
‘
] |

Occurs when a high priority task is blocked by

a lower-priority task a for an unbounded
Interval of time.

Mars Pathfinder

The MARS Pathfinder problem

“VxWorks provides preemptive priority scheduling of threads.
Tasks on the Pathfinder spacecraft were executed as threads
with priorities that were assigned in the usual manner reflecting
the relative urgency of these tasks.”

“Pathfinder contained an "information bus", which you can
think of as a shared memory area used for passing information
between different components of the spacecraft.”

A bus management task ran frequently with high priority
to move certain kinds of data in and out of the
iInformation bus. Access to the bus was synchronized
with mutual exclusion locks (mutexes).”

The MARS Pathfinder problem

The meteorological data gathering task ran as an
Infrequent, low priority thread, ... When publishing its data,

It would acquire a mutex, do writes to the bus, and release
the mutex. ..

The spacecraft also contained a communications task that
ran with medium priority.”

.
High priority: retrieval of data from shared memory

Medium priority: communications task
Low priority: thread collecting meteorological data

The MARS Pathfinder problem

‘... However, very infrequently it was possible for an interrupt to occur
that caused the (medium priority) communications task to be scheduled
during the short interval while the (high priority) information bus thread
was blocked waiting for the (low priority) meteorological data thread.

In this case, the long-running communications task, having higher priority
than the meteorological task, would prevent it from running, consequently
preventing the blocked information bus task from running.

After some time had passed, a watchdog timer would go off, notice that
the data bus task had not been executed for some time, conclude that
something had gone drastically wrong, and initiate a total system reset.”

Solutions

Disallow preemption during the execution of all critical
sections. Simple, but creates unnecessary blocking as
unrelated tasks may be blocked.

l[7. blocked
1
T |
1
t P(S) V(S)
I 5 | |
P(S) V(S)
T3 >

normal execution critical section

Coping with priority inversion:
the priority inheritance protocol

Tasks are scheduled according to their active priorities.
Tasks with the same priorities are scheduled FCFS.

If task 7', executes P(S) & exclusive access granted to 75:
T, will become blocked.

If priority(7,) < priority(7;): 7, inherits the priority of 7.

@ T, resumes.

Rule: tasks inherit the highest priority of tasks blocked by it.

When 7, executes V(S), its priority is decreased to the
highest priority of the tasks blocked by it.

If no other task blocked by 7.: priority(7,):= original value.
Highest priority task so far blocked on S is resumed.

Transitive: if 7, blocks 7', and 7, blocks 7,
then 77, inherits the priority of 7j,.

Example

How would priority inheritance affect our example with 3 tasks?

75 inherits the\

P(S) [sleep] resumed priority of 7
Lo y v and 7;

1 . ~___resumes.
— "
T2 ; : ;

S
~ V

normal execution critical section

Nested critical sections

- |
P(a) P(b) V(b) V(a)

T T a b b b a

3 o

R A Priority | | Iﬁ/ priority does not change
"1 | of T, | |
2 |]
T3 5

[1 1 T~
| I | —
[

Priority Ceiling Protocol

Each task has a static default priority assigned (perhaps by
the deadline monotonic scheme)

Each resource has a static ceiling value defined, this is the
maximum priority of the tasks that use it

A task has a dynamic priority that is the maximum of its
own static priority and any it inherits due to it blocking
higher-priority tasks

A task can only lock a resource if its dynamic priority is
higher than the ceiling of any currently locked resource
(excluding any that it has already locked itself)

Priority Ceiling Protocol

A high-priority task can be blocked at most once
during its execution by lower-priority tasks

Deadlocks are prevented
Transitive blocking is prevented

Mutual exclusive access to resources is ensured (by
the protocol itself)

Immediate Ceiling Priority Protocol

priority (H) > priority (M) > priority (L)
- normal execution H and L share resource R

77| critical region

H blocked

——

Response Time and Blocking

R=C +B +1.
o
R=C+B+ > [Z[,
=T
jenp(y| 1]

w"=C+B +
jehp(iy| T

Insufficient Priorities

= If insufficient priorities then tasks must share
priority levels

= If task a shares priority with task b, then
each must assume the other interferes

= Priority assignment algorithm can be used to
pack tasks together

= Ada requires 31, RT-POSIX 32 and RT-Java
28

Processor Demand Criterion
[Baruah, Howell, Rosier 1990]

For checking the existence of a feasibile schedule
under EDF

In any interval of time, the computation
demanded by the task set must be no greater
than the available time.

vVit,t, >0, g(t,t,) < (1, —1)

Processor Demand

o] Lo | b L

t) t,

The demand in [t, t,] is the computation time of
those jobs started at or after t, with deadline less
than or equal to t,:

g(t,t,) = ZCZ'

12l

Processor Demand

For synchronous task sets we can only analyze intervals [O,L]

Processor Demand Test

l

n
=1

L-D,
T

Example

T [||
= |

0 2 4 6 8 10 12 14

Upper Bound for PD Test

-

i(Ti _Di)Ci /Ti\

L. =maxs D,,...,Dy,- 0 S

U is the utilisation of the task set, note upper bound not
defined for U=1

[U.C. Devi, An Improved Schedulability Test for Uniprocessor
Periodic Task Systems]/

PD Test with Blocking

= Compute the maximum blocking time for each task

= Inflate C; by B,

EDF D=T

i-1
vi S % OBy

EDF D < T task setis schedulableif U< 1 and

L+T D,
T

C, <L

ViVe B+
k=l

Non-preemtive scheduling

It is a special case of preemptive scheduling where
all tasks share a single resource for their entire
duration.

T3 R | l

The max blocking time for task t; is given by the
largest C, among the lowest priority tasks:

B, = max{C, : P, <P}

Advantages of NP scheduling

e |t reduces runtime overhead
» Less context switches
» No semaphores are needed for critical sections

e |t reduces stack size, since no more than one
task can be in execution.

e |t preserves program locality, improving the
effectiveness of

» Cache memory
» Pipeline mechanisms

» Prefetch queues

Advantages of NP scheduling

e As a consequence, task execution times are
» Smaller

» More predictable

} distribution ,
non-preemptive

preemptive

min

Advantages of NP scheduling

In fixed priority systems can improve schedulabiilty:

U = —+—; 0.97

S S A o
rzl..'h-'nq [.\md »

0 35
deadlme miss

35

NP-RM
Y b e | | el |em | |
0o 5 10 15 20 25 30 35

Disadvantages of NP scheduling

e |n general, NP scheduling reduces schedulability.

e The utilization bound under non preemptive
scheduling drops to zero:

LC1=8
T _
T1
" RN
C, =T, T,
g C,
U= —+— — 0
T, o0

Trade-off solutions

Tunable Preemptive Systems

e Compute the longest non-preemptive section that
allows a feasible schedule

o Allow preemption only in certain points in the code.

Task code
SE— PP, PP, PP;
e % preemption points

Handling Jitter & Delay

Jitter for an event

The maximum time variation in the occurrence
of a particular event in two consecutive jobs.

In many control applications, delay and jitter
can cause instability or jerky behavior

Definitions

Start time delay (Input Latency): INL;, — Iy

Ti

el

Ii,1 Syl

Ii,2 Si2 I3,3 51,3

Start time Jitter (Input Jitter):

Absolute: N 2bs
1

Relative: [NJ ifel

mix (Six —Tix) — mliﬂ (Six — Tix)

mix ‘ (Six —Ti) — (Six1— Tik1) |

Definitions

Response Time (Output Latency): R;, = f, —r;;

i1 fi1 ri2 fir ri3 fi3

Response Time Jitter (Output Jitter):
Absolute: RTJ iabs = max (f;; — ;) — min (f;, —1;y)
k k

Relative: RT]J irel = mix | (fi,k— fi,k) — (fi,k-l - ri,k-l) ‘

Definitions

Input-Output Latency: IOL;, = £, —s;,

— mw | @
si1 fi1 sio fi2 Si3 fi3

Input-Output Jitter:

Absolute: IOJf‘bS = max (f;; —s;,) — mn (fj; —s;y)
k k

g rel __
Relative: 10 = mix ‘ (fix = Sin) — (Biger — Sike 1)|

Jitter under RM

INJ| RTJ| IOJ
L o I
0 6 12 18 24
”...h.!.. 2|22
0 8 16
IIII!IIIA]FI]I[III 3 8 5
0 12 24

Low priority tasks experience very high
delay and jitter

Jitter under EDF

INJ | RTJ| 1IOJ

Tlh[...n#...]m.. L0

0 6 12 18 24
sz#mﬁhm. 2120

0 8 16
T 3 3 0
3 S I S

0 12 24

For a little increase of RTJ,, RTJ; decreases a lot

|IOJ = 0 for all the tasks

Normalized Avg. RTJ

A

RM
I I AN U I NN NN N N VAN

o644 4 3 A

05 _ EDF
Y S W N S S S S

Jitter under RM and EDF

U=09 N=10

T T T T T T T T

0 E
1

2 3 4 5 6 7 8 9
Task number (ordered by increasing periods)

How to handle delay and jitter
Two main methods can be used to reduce the
effect of delay and jitter:

1. compensate them by proper control actions;

2. reduce them as much as possible.

Even when compensation is used, reducing
delay and jitter improves system performance

$

Hence we concentrate on reduction methods

Jitter Reduction methods

Three methods can be used to reduce the jitter
caused by task interference:

1. Task Splitting
2. Advancing Deadlines

3. Non Preemptive Scheduling

Reducing Jitter by Task Splitting

Input processing output
part part part

N/
N

The idea Is to force input and output parts to
execute in a time-triggered fashion, using timers:

i i .

Reducing Jitter by Task Splitting

Advantages

1. Jitter i1s reduced at the minimum possible
value;

2. If Input and output parts are small, this
method is effective for any task,
iIndependently of the scheduler and task
parameters.

Reducing Jitter by Task Splitting

Disadvantages
1. Extra effort to be implemented;
2. Jitter is reduced at the expense of delay;

3. Input and output parts create extra
iInterference which complicates the analysis
and reduces schedulabillity;

4. Input and output parts may compete and
need to be scheduled with some policy.

Reducing Jitter by Task Splitting

Interfering 1/O parts

Reducing Jitter by Advancing Deadlines

The idea is to advance task deadlines to reduce
the active window in which jobs can be executed:

active window

active window

S ——

active window
<(meee——>

.

active window
<>

B

Reducing Jitter by Advancing Deadlines

Advantages

1. Easy to implement (no special support is
required from the OS);

2. No extra Interference caused by additional
timer interrupts;

3. Both delay and jitter are reduced!!

Reducing Jitter by Advancing Deadlines

Disadvantages

1. Not all tasks can reduce |jitter to zero. A
further reduction can be achieved by proper
offsets, but the analysis requires exponential
complexity.

2. Advancing deadlines reduces system
schedulabillity.

Reducing Jitter by Non Preemption

Disabling preemtions a task can be delayed, but
once started cannot be interrupted:

IOL;, 0L,
S

=) | Vk < 0Ly = G

e IOJi,k =0

Reducing Jitter by Non Preemption

Example with 3 tasks

T | L L ‘ |

1 [| I I

0 6 12 18 24
T

2 ~ B 1 i .

0 8 16 24
15

I' |||||| ' |||||||

Reducing Jitter by Non Preemption

Advantages
1. 10J; = 0O for all tasks;

2. I0OL; = C, for all tasks, simplifying the use of
delay compensation techniques;

3. Non preemptive execution also simplifies
resource management (there is no need to
protect critical sections).

4. Non preemptive execution allows stack
sharing.

Reducing Jitter by Non Preemption

Disadvantages

1. Non preemption reduces schedulability
(analysis must take blocking times into

account);

2. The utilization upper bound drops to zero:

C, =0
| |

U,—>0 |
C, > T, T, > w

U,—>20

Scheduling under
overload conditions

RM under overloads

U = 4+6+i_125
12 20

LR NN R

TZ !kll!lklll![hﬁlllnl
4 36 8 60

T, | |

II

e High priority tasks execute at the proper rate
e Low priority tasks are completely blocked

EDF under overloads

U = 4+6+i:1.25

8 12 20

e All tasks execute at a slower rate

e No task is blocked

EDF under overloads

Theorem (Cervin ‘03)

If U > 1, EDF executes tasks with an
average period T, =T, U.

. U=1.25

‘ I, T,

||||||| 8I Ill0 ﬂ‘ ‘Cl 8 10

||||||||||| 1 T 1 ‘Ez 12 15
12 15 ﬁ

- T, 20| 25

Exploiting control flexibility

Relaxing timing constraints

e The idea is to reduce the load by increasing
deadlines and/or periods.

e Each task must specify a range of values in
which its period must be included.

e Periods are increased during overloads, and
reduced when the overload is over.

Many control applications allow timing flexibility

Obstacle avoidance

e The closer the obstacle, the higher the
acquisition rate:

! Low rate

! High rate

Engine control

e Some tasks need to be activated at specific
angles of the motor axis:

—> the higher the speed, the higher the rate.

@

A

Elastic task model

e A periodic task 7j is characterized by:
(Ch Ti—min, Ti-max, Ei)

e Tasks’ utilizations are treated as elastic springs

e The resistance of a task to a period variation is
controlled by an elastic coefficient E,

Compression algorithm

During overloads, utilizations must be
compressed to bring the load below a desired
value U,.

Solution for tasks

then: I = —

Conclusions

Estimate worst-case computation times of tasks,
using specific tools and testing.

Select an appropriate scheduling algorithm and
a suitable resource access protocol.

Estimate maximum blocking times due non
preemptive sections or mutually exclusive
resources.

Apply schedulability analysis to verify feasibility.

Exploit system flexibility defining admissible
ranges of parameters to cope with overloads.

CMACHBO 3A BHUMAHUE
hbd@cs.msu.su

