NMHOPOPMALIMOHHO-YIMNMPABNAOLWLUE CACTEMbDbI
PEAJIbHOI'O BPEMEHW

Jlekuma 2:
AnHamMmnyeckoe niaaHupoBaHNe BbIYUC/IEHHH
M OLE€HKa n1aHnpyemocTy - 1

Kadenpa ACBK,
JlabopaTtopus BblumncnntenbHbix Komnnekcos
banawlioB B.B.

Software Control Systems

processor

- @ — D/A mr—> actuators |L—>

sensors [\

Memory buffer

Typical task structure

buffer

=—p <read data>

<process data>

<write datg>

buffer

<wait for next activation>

Activation modes

Periodic task (time driven) timer —— ’?

A task is automatically
activated by the kernel Task
at regular time intervals

Aperiodic task (event driven)

A task is activated upon event —
the arrival of an event
(interrupt or explicit activation)

Task
body

Complex control applications

e Hierarchical design
e Many periodic activities running a different rates

e Many event-driven routines

'

—
-

N N

Task scheduling

When more tasks are ready to execute, the order
of execution is decided by the scheduler:

READY queue

Importance of scheduling

It affects task response times
It affects delay and jitter in control loops

It affects execution times (preemptions destroy
cache data and prefetch queues)

It can be used to cope with overload conditions
It can be used to optimize resource usage

It can be used to save energy In processors
with voltage scaling (energy-aware scheduling)

Control design

Design of control laws

Y

Mapping to periodic tasks

Y

Schedulability analysis

No

Feasible?

Implementation

Run time monitoring

'

Meet No
constraints?

i Yes

Periodic Task Scheduling

We have n periodic tasks: {T1 T2 ... Tn}

relative absolute
7, (Ci, Ti, Di) period deadline deadline d,,
T; D
[« -l

& e 1T el

1 1 j >

ri1 = O Tik dix Tik+l t

Goal

= Execute all tasks within their = @+ (k=1) T;
deadlines

= Verify feasibility before runtime dix = rix + D;

Fixed-Priority Scheduling (FPS)

This is the most widely used approach

Each task has a fixed, static, priority which is
computed pre-run-time

The runnable tasks are executed in the order
determined by their priority

In real-time systems, the “priority” of a task is
derived from its temporal requirements, not its
importance to the correct functioning of the system
or its integrity

Earliest Deadline First (EDF)

= The runnable tasks are executed in the order
determined by the absolute deadlines of the tasks

= The next task to run being the one with the
shortest (nearest) deadline

= Although it is usual to know the relative deadlines
of each task (e.g. 25ms after release), the absolute
deadlines are computed at run time and hence the
scheme is described as dynamic

EDF ¢

EDF vs. RM Schedule

)
T S [
0 6 9o 1 15 1

3 2

RM «

S
o] — | —
) o 3 6 9 12 15 18
)
T1
0 3 6 9 12 15 18
S ISy S
\ 0o 3 6 9} 12 15 18

deadline miss

FPS v EDF

FPS is easier to implement as priorities are static

EDF is dynamic and requires a more complex run-
time system which will have higher overhead

It is easier to incorporate tasks without deadlines
into FPS; giving a task an arbitrary deadline is more
artificial

It is easier to incorporate other factors into the
notion of priority than it is into the notion of deadline

FPS v EDF

= During overload situations

> FPS is more predictable; Low priority process miss
their deadlines first

> EDF is unpredictable; a domino effect can occur in
which a large number of processes miss deadlines

= But EDF gets more out of the processor!

Preemption

With priority-based scheduling, a high-priority task may be
released during the execution of a lower priority one

In a preemptive scheme, there will be an immediate switch
to the higher-priority task

With non-preemption, the lower-priority task will be allowed
to complete before the other executes

Preemptive schemes enable higher-priority tasks to be
more reactive, and hence they are preferred

Scheduling Characteristics

= Sufficient — pass the test will meet deadlines
= Necessary — fail the test will miss deadlines

= Exact — necessary and sufficient

= Sustainable — system stays schedulable if
conditions ‘improve’

Simple Task Model

The application is assumed to consist of a fixed set of tasks
All tasks are periodic, with known periods

The tasks are completely independent of each other

A

| system's overheads, context-switching times and so on
are ignored (i.e, assumed to have zero cost)

All tasks have a deadline equal to their period (that is, each
task must complete before it is next released)

All tasks have a fixed worst-case execution time

34 X 0 =2 +HA g QW

Standard Notation

Worst-case blocking time for the task (if applicable)
Worst-case computation time (WCET) of the task
Deadline of the task

The interference time of the task

Number of tasks in the system

Priority assigned to the task (if applicable)

Worst-case response time of the task

Minimum time between task releases, jobs, (task period)
The utilization of each task (equal to C/T)

Rate Monotonic Priority Assignment

Each task is assigned a (unique) priority based on its
period; the shorter the period, the higher the priority

l.e, for two tasks i and 7,

Ti<Tj=Pi>Pj
This assignment is optimal in the sense that if any task
set can be scheduled (using pre-emptive priority-based
scheduling) with a fixed-priority assignment scheme,

then the given task set can also be scheduled with a
rate monotonic assignment scheme

Note, priority 1 is the lowest (least) priority

Example Priority Assignment

Process Period, T Priority, P
a 25 5
o) 60 3
C 42 4
d 105 1
e 75 2

Basic results

-

Independent tasks

Assumptions: -

\

In 1973, Liu & Layland proved that a set of n
periodic tasks can be feasibly scheduled

‘underRM if Z% < nl2""-1)
i=1 '

1

under EDF If and only if

i [M]s
) | G
IA

\.

Schedulability bound

0.69

~

o
=
T

E
-
8
T
=
S
8=

EDF

e
&
-
o
@)

An unfeasible RM schedule

deadline miss

EDF ¢

EDF vs. RM Schedule

)
T S [
0 6 9o 1 15 1

3 2

RM «

S
o] — | —
) o 3 6 9 12 15 18
)
T1
0 3 6 9 12 15 18
S ISy S
\ 0o 3 6 9} 12 15 18

deadline miss

Schedulability region

A more useful approach is to identify a region in the
space of task parameters where the system is
schedulable by an algorithm.

par2 ! Infeasible

par

Schedulability region

U, , The U-space

Schedulability region

U, , The U-space
1]

0.83 -

1/2 7

49 083 1

The Hyperbolic Bound

e |[n 2000, Bini et al. proved that a set of n
periodic tasks is schedulable with RM if:

IN
N

H(U; 1)

Schedulability region

U, , The U-space

Schedulability region
The U-space

Handling tasks with D < T

Ti] |
Iik dix Tik+1

Scheduling algorithms

e Deadline Monotonic: p; < 1/D; (static)

e Earliest Deadline First. p;<c1/d;, (dynamic)

How to guarantee feasibility?

Iik dix Tixsr ©

e Fixed priority: Response Time Analysis (RTA)
e EDF: Processor Demand Criterion (PDC)

Response Time Analysis
[Audsley, 1990]

e For each task T, compute the interference
due to higher priority tasks:

I, =) C,

D, <D,

e Compute its response time as
R, = G+

o Verifyif R, < D,

Computing the interference

T ‘ ”
0 R,
Interference of 1, on T; 7 = & C
in the interval [0, R,]: ik T k
k
i-1 [p |

Interference of high
priority tasks on T::

Response Time Equation

R =C + > R C.

ichp(| T,]

Where hp(i) is the set of tasks with priority higher than task |

Solve by forming a recurrence relationship:

w't=C. + > — IC,
jenp@iy| T.

The set of valuesw;, w;,w",...,W",..is monotonically non decreasing.
Whenw =w™" the solution to the equation has been found; w;
must not be greater that R (e.g. 0 orC,)

Response Time Calculation Algorithm

for 1 in 1..N loop —-- for each process 1in turn
n := 0
w' =C

loop

n+1

calculate new W
if w'"™ =w" then
R =w'
exit value found
end if
if w™>T then
exit value not found
end if
n :(=n + 1
end loop
end loop

Task Set A

Task Period ComputationTime Priority
T C P
a 7 3 3
b 12 3 2
C 20 5 1
w, =3
R =3

Task Set B

Process Period ComputationTime Priority Response time

T C P R
a 80 40 1 80
b 40 10 2 15
C 20 5 3 5

= The combined utilization is 1.0

= This was above the utilization threshold for three tasks
(0.78), therefore it failed the test

= The response time analysis shows that the task set will
meet all its deadlines

Response Time Analysis

= Is sufficient and necessary (exact)

= If the task set passes the test they will meet
all their deadlines; if they fail the test then,
at run-time, a task will miss its deadline
(unless the computation time estimations
themselves turn out to be pessimistic)

Sporadic Tasks

s Sporadics tasks have a minimum inter-arrival time
= They also require D<T

= The response time algorithm for fixed priority
scheduling works perfectly for values of D less than
T as long as the stopping criteria becomes

W."* > D.
= It also works perfectly well with any priority

ordering — hp(i) always gives the set of higher-
priority tasks

Aperiodic Tasks

These do not have minimum inter-arrival times

Can run aperiodic tasks at a priority below the
priorities assigned to hard processes, therefore,
they cannot steal, in a pre-emptive system,
resources from the hard processes

This does not provide adequate support to soft
tasks which will often miss their deadlines

To improve the situation for soft tasks, a server can
be employed

Execution-time Servers

= A server:

> Has a capacity/budget of C that is available to its
client tasks (typically aperiodic tasks)

> When a client runs it uses up the budget

~ The server has

a replenishment policy

» If there is currently no budget then clients do not

run

's other tasks from excessive

~ Hence it protec

aperiodic activity

Periodic Server (PS)

Budget C
Replenishment Period T, starting at say 0

Client ready to run at time 0 (or T, 2T etc) runs
while budget available, is then suspended

Budget ‘idles away’ if no clients

Analyzed as a periodic task

Deferrable Server (DS)

Budget C

Period T — replenished every T time units (back to
C)

» For example 10ms every 50ms
Anytime budget available clients can execute
Client suspended when budget exhausted

DS is referred to as banawidth preserving
> Retain capacity as long as possible

PS is not bandwidth preserving

Task Sets with D < T

= For D = T, Rate Monotonic priority ordering is
optimal

= For D < T, Deadline Monotonic priority
ordering is optimal

Di<Dj:>Pi>Pj

= Response time analysis is applicable “as is”
to task sets with D <

D < T Example Task Set

Task Period Deadline ComputationTime Priority Response time

T D C P R
a 20 5 3 4 3
b 15 7 3 3 6
C 10 10 4 2 10
d 20 20 3 1 20

Proof that DMPO is Optimal

= Deadline monotonic priority ordering (DMPO) is
optimal if any task set, Q, that is schedulable by

priority scheme, w, is also schedulable by DMPO

= The proof of optimality of DMPO involves
transforming the priorities of ¢ (as assigned by w)

until the ordering is DMPO

= Each step of the transformation will preserve
schedulability

DMPO Proof Continued

= Let i and j be two tasks (with adjacent priorities) in Q
such that underw: P >P AD,>D,

= Define scheme w’ to be identical to w except that tasks i
and j are swapped

Consider the schedulability of ¢ under w’
= All tasks with priorities greater than P will be unaffected

by this change to lower-priority tasks

= All tasks with priorities lower than P, will be unaffected;
they will all experience the same interference from i and

]
= Task j, which was schedulable under w, now has a higher

priority, suffers less interference, and hence must be
schedulable under w’

DMPO Proof Continued

All that is left is the need to show that task i, which has had
its priority lowered, is still schedulable

Underw g <b D, <DandD,<T,

Hence task i only interferes once during the execution of j
It follows that: R\ =R <D, <D

It can be concluded that task i is schedulable after the
switch

Priority scheme W’ can now be transformed to w" by

choosing two more tasks that are in the wrong order for
DMP and switching them

CMACHBO 3A BHUMAHUE
hbd@cs.msu.su

