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Dynamic Parameter Adaptation for
M-LWDF/M-LWWF Scheduling
Ju Yong Lee, Member, IEEE, Sameh Sorour, Student Member, IEEE,

Shahrokh Valaee, Senior Member, IEEE, and Wonyoung Park

Abstract—M-LWWF/M-LWDF scheduling schemes have at-
tracted much interest due to their ability to both stabilize queues
whenever possible and control delay through parameter selection.
However, a good implementation of these schedulers would
require a mechanism to minimize the required fraction of the
bandwidth while satisfying its stability and delay requirements.
To the best of our knowledge, previous works on these scheduling
policies did not address the problem of minimizing the bandwidth
utilization while satisfying delay constraints.

In this paper, we explore the solution of this problem using
a joint bandwidth and weight adaptation approach. We charac-
terize the problem solution space for M-LWWF and M-LWDF
scheduling, assuming time-varying traffic. We also show that,
starting from any point in the solution space, simple dynamic
bandwidth and weight updates can surely lead to the convergence
to the optimal operation point in this space. Based on these
characteristics, we propose a dynamic parameter adaptation
algorithm that is able to track the time-varying optimal operation
points for dynamic traffic and channel conditions. Simulation
results show the efficiency of our proposed algorithm in tracking
the optimal operation points in dynamic traffic and channel
settings.

Index Terms—M-LWWF/M-LWDF scheduling, parameter op-
timization, bandwidth minimization, Lyapunov stability.

I. INTRODUCTION

OPPORTUNISTIC scheduling has been a target of in-
tensive studies in academia and industry in the past

decade due to its ability to exploit user mobility and wireless
channel variations to achieve higher system performance. An
attractive feature of opportunistic scheduling is its ability to
achieve these performance improvements using simple and
easily implementable index policies [1].

Different opportunistic scheduling approaches have been
proposed in the literature. Some of these approaches [2–5]
consider the infinite backlog model that assumes permanent
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availability of data in user queues. The goal of these ap-
proaches is to maximize the achievable wireless capacity under
either temporal bandwidth or proportional fairness constraints.
Liu et al. [2] proposed an opportunistic scheduling algorithm
with weighted temporal ratio fairness while Borst et al. [3]
propose a scheduling algorithm with weighted bandwidth ratio
fairness. These algorithms propose the adjustment of user
weight values to satisfy bandwidth or temporal ratio fairness.
Park et al. [4] proposed a scheduler using cumulative distribu-
tion function of air channel capacity, where temporal fairness
can be guaranteed and average throughput can be derived
from channel distribution and temporal ratios. However, it
needs a large amount of statistics to measure exact channel
distribution, and thus, it is difficult to adapt to the dynamically
changing environment.

One problem with the aforementioned scheduling ap-
proaches is the infinite backlog model assumption, which is
not generally a practical assumption. It is more practical to
consider finite backlog model, where traffic is not perma-
nently present in user queues but rather fluctuates according
to some stochastic models. In such works, the main focus
of the designed scheduler is to minimize packet delays in
different queues and/or stabilize user queues whenever any
other scheduler can. These schedulers are known as throughput
optimal schedulers. One of the leading works in this direction
is [6], where it is proved that for symmetric input traffic
and packet loss probabilities, the longest connected queue
(LCQ) scheduling minimizes the average delay. In [7, 8], Ganti
et al. generalized [6] to the case for symmetric Bernoulli
traffic and ON/OFF channels. Neely et al. [9] computed upper
bounds on the delay of stabilizing largest-queue type strate-
gies for heterogeneous downlinks. Later, Neely proposed in
[10] a dynamic queue-length aware algorithm that maximizes
throughput and achieves average delay over ON/OFF channels
that is independent of the number of queues. They apply this
policy to both symmetric and asymmetric systems.

Along the same line, another set of throughput optimal algo-
rithms were proposed in [11–13], namely the modified large
weighted delay first (M-LWDF), modified largest weighted
work first (M-LWWF) and the exponential (EXP) rule sched-
ulers. These schedulers select the user whose delay (or queue
length) weighted sum (or a function) of user rates is maximum.
An additional weight is also employed in the selection policy
of these schedulers to control the delay violation probability of
the different queues [14]. These weights are generally fixed
to a certain value related to the delay bound and an upper-

1536-1276/12$31.00 c© 2012 IEEE
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bound on the delay violation probability. M-LWWF and M-
LWDF can be regarded as the special case of MaxWeight
scheduling [15], whose stability has been discussed in [16].
Recently, Sadiq et. al [17] proposed the Log rule, where for
linearly growing queues, the scheduler allocates service in a
manner that de-emphasizes the balancing of unequal queues
in favor of maximizing current system throughput (being
opportunistic). They provide the important insight that queue
length information is critical in developing throughput optimal
scheduling schemes.

The opportunistic scheduling literature, for both infinite
and finite backlog models, assumed that the whole system
bandwidth is available to serve the incoming traffic flows.
This assumption is clearly valid for the infinite backlog model
as all the system bandwidth is required to serve the infinite
amount of traffic. However, the full bandwidth utilization is
not always needed in the finite backlog model for traffic that is
required to satisfy average delays. Moreover, user weights are
assumed to be fixed in some of these scheduling techniques.
However, in practical systems, both incoming traffic flows
from different users and channel qualities are time varying.
In [18], it is pointed out that, although the flexibility in
assigning these weights allows one to handle heterogeneity in
channel capacity distribution, it is very difficult to determine
these weights because they are dependent on the channel
capacity distributions and traffic characteristics of all users.
Moreover, Andrews et al. [14] argue that the feasibility of
queue stability and delay requirements in throughput optimal
schedulers (M-LWDF in this article) requires a good binding
of the flows’ characteristics with respect to the available
bandwidth and an efficient call admission control.

In addition, wireless networks generally serve both delay-
constrained and best-effort traffic. Consequently, higher ser-
vice can be given to the best-effort traffic if the delay-
constrained traffic is satisfied with the minimum possible
bandwidth. All of these aspects require a mechanism for joint
dynamic bandwidth and user weight adaptation such that the
bandwidth is minimized while satisfying the delay constraints
of different traffic flows. This parameter adaptation process is
also important for designing call admission control algorithms
when these scheduling techniques are practically implemented
in real networks. For example, if a new call requires the
resource less than the remaining bandwidth, the call can be
admitted. Otherwise, it is rejected.

In this paper, we first formulate the joint bandwidth and
weight adaptation problem. Then, we characterize the solution
space of the adaptation problem in terms of bandwidth and
user weights, for both M-LWDF and M-LWWF schedulers,
and show that the optimal operation point can be reached
from any point in this solution space using a simple parameter
update approach. We then find an efficient dynamic parameter
adaptation algorithm for both schedulers without any assump-
tions on the traffic and channel fluctuations. The proposed
algorithm tends to track the time-varying optimal operation
point of the system. We then evaluate the performance of our
proposed algorithm in an OFDMA based WiMAX wireless
environment.

The rest of this paper is organized as follows: In Section II,
we describe the optimization problem in M-LWWF/M-LWDF

schedulers. Section III proposes a parameter optimization
algorithm and validates its stability. We develop a dynamic
parameter adaptation algorithm in mobile WiMAX system in
Section IV. Section V presents the simulation results in a
downlink OFDMA-based WiMAX system. Finally, Section VI
concludes the paper.

II. PROBLEM STATEMENT IN M-LWWF/M-LWDF
SCHEDULING

We assume there are K users denoted with the set K =
{1, 2, . . . ,K}. Let Ak(t) be the traffic arrived to the k-th user
queue during [0, t), where input traffic packets are assumed to
arrive in discrete time. We define Ak(t), k ∈ K as:

Ak(t) = Ak,i for tk,i−1 ≤ t < tk,i, i = 1, 2, . . . , (1)

where Ak,i−1 < Ak,i. Then, Ak(·) is a piecewise constant and
nondecreasing function. Let ck(t) be the channel capacity if
the k-th user is selected for transmission at time t, where ck(·)
is assumed to be uniformly bounded and piecewise constant
function. Let Sk(t) be the traffic served in the k-th queue
during [0, t). Note that Sk(·) are nondecreasing functions. We
denote by Qk(t), the occupancy of the k-th queue at time t
expressed as:

Qk(t) = Ak(t)− Sk(t). (2)

We also define Dk(t) as the delay that the head-of-line traffic
in the k-th queue suffers at time t. Then, Dk(·) can be
expressed as:

Dk(t) = t−Hk(Sk(t)). (3)

where Hk(x) = tk,i for Ak,i ≤ x < Ak,i+1, i = 1, 2, . . ..
Since Ak(t) ≥ Sk(t), Qk(t) ≥ 0 and Dk(t) ≥ 0 k ∈ K, ∀t ≥
t0.

M-LWWF and M-LWDF schedulers stabilize the system
whenever any other feasible scheduler can stabilize the sys-
tem [11]. We consider these schedulers in continuous time
domain. Let I(t) be the index of the queue scheduled at time
t. Then, I(t) for the M-LWWF and M-LWDF schedulers can
be expressed as [11]:

I(t) ∈ argmax
k∈K

(αkQk(t)ck(t)) , (4)

I(t) ∈ argmax
k∈K

(αkDk(t)ck(t)) , (5)

respectively, where αk > 0 is the k-th user weight. We
consider cases in which more than one index satisfy the above
maximizations. In such situations, we break ties by serving
queues with the largest capacity (better utilization). If the i-th
queue and the j-th queue with ties have the same capacity and
i < j, the i-th queue is served. Then, (4) and (5) give unique
solution for Qk(·) and Dk(·), k ∈ K.

We assume that the total available resources are used to
serve both QoS guaranteed and best effort traffic. The objec-
tive is to minimize the total consumed capacity for guaranteed
traffic, while maintaining the required QoS. The minimization
of the allocated resources to the QoS traffic provides a better
service for the best effort traffic.

The ratio of the allocated resources for the QoS guaranteed
traffic to the total available resources is denoted by Ψ, where
0 < Ψ ≤ 1. This representation aligns well with OFDMA
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and TDMA schemes, which are the modulations of choice for
future wireless technologies. For instance, in OFDMA one can
assume that a subset of subcarriers in each symbol is allocated
to QoS guaranteed sources, and the rest left for best effort
service. With this definition, the total available bandwidth for
a scheduled queue k at time t is Ψck(t).

First, we consider the M-LWWF scheduling. Suppose that
αiQi(t1)ci(t1) = αjQj(t1)cj(t1), and Ak(·) and ck(·),
∀k ∈ K do not change during [t1, t2). If there exists a
δ(< t2 − t1) such that the i-th queue is served and the j-
th queue is not served during [t1, t1 + δ), the i-th queue size
decreases and the j-th queue size does not decrease, and thus,
αiQi(t1 + δ/2)ci(t1 + δ/2) < αjQj(t1 + δ/2)cj(t1 + δ/2),
which contradicts the scheduling policy (4). Therefore, for
some δ, αiQi(t)ci(t) = αjQj(t)cj(t), t1 ≤ t < t1 + δ, where
both queues are served and overall resource Ψ is utilized by
these queues simultaneously during (t1, t1 + δ). Let Ω(t) be
the set of served queues at time t. Let Jk(t) be the allocated
bandwidth ratio for the k-th queue such that the service given
to the queue k at time t is

Sk(t) = Ψ

∫ t

0

Jk(τ)ck(τ)dτ, (6)

where 0 < Jk(t) ≤ 1 for k ∈ Ω(t).
Suppose that no packet arrives in queue i and j during

[t1, t2), ci(t) and cj(t) are constant during [t1, t2), and i, j ∈
Ω(t) for t ∈ [t1, t2). Then,

αiQi(t)ci(t) = αjQj(t)cj(t). (7)

Thus,

αi

(
Ai(t1)−Ψ

∫ t

0

Ji(τ)ci(τ)dτ

)
ci(t1)

= αj

(
Aj(t1)−Ψ

∫ t

0

Jj(τ)cj(τ)dτ

)
cj(t1). (8)

Differentiating both sides of (8),

Ji(t)

Jj(t)
=

αj(cj(t))
2

αi(ci(t))2
. (9)

Since
∑

k∈Ω(t) Jk(t) = 1,

Jk(t) =
1

αk(ck(t))2

⎛
⎝ ∑

i∈Ω(t)

1

αi(ci(t))2

⎞
⎠

−1

. (10)

Therefore, Jk(·) is a piecewise constant function, and thus,
Sk(·) in (6) is a continuous and piecewise linear function.
Moreover, Qk(·) is a piecewise linear function.

Now we consider the M-LWDF scheduling. Since ck(·)
is uniformly bounded, Sk(·) is a continuous function. Thus,
Hk(Sk(t)) is a piecewise constant function for t. If Hk(Sk(t))
is constant for t1 ≤ t < t2,

d

dt
Dk(t) = 1, t1 < t < t2. (11)

Therefore, from the scheduling policy in (5), only one user can
be served during (t1, t2), that is, Jk(t) = 1 or Jk(t) = 0. The
discontinuity of Dk(·) occurs when Sk(t) = Ak,i, i = 1, 2, ....
Thus, Dk(·) is a piecewise linear function.

Users may have different quality-of-service (QoS) require-
ments. In this paper, we deal with satisfying the average
delay requirements. A similar approach can be suggested for
average queue occupancy requirements. Let dk and d̂k be
the average delay and the target average delay for the k-th
user, respectively. In M-LWDF/M-LWWF schedulers, dk is
a function of Ψ and α = (α1, α2, . . . , αK). The objective
is to minimize the total consumed resources while satisfying
the QoS requirements (identified as the average delay) for all
users. Accordingly, we consider the following problem:

min
Ψ,α

Ψ (12)

such that dk(Ψ,α) ≤ d̂k, k ∈ K.

We denote the solution of (12) by (Ψ∗,α∗).
Our objective in minimization (12) is to reduce the total

resources consumed by QoS guaranteed sources and hence
improve the performance of the best-effort flows. As a result,
one might introduce a more general problem to optimize for
a control policy Ψ(Q1, . . . , QK ; c1, . . . , cK) such that EΨ(·)
is minimized [19]. However, in this paper we consider the
minimization (12) for two reasons. First, as we will show in
Section IV, this case aligns well with the current and up-
coming standards such as WiFi Point Coordination Function,
WiMax and LTE. Second, (12) can be easily solved recursively
with decomposing into two subproblems that can be iterated
to arrive at the optimal solution.

In general, (12) is a nonlinear nonconvex optimization
problem. We propose an algorithm that can converge to the
optimal value iteratively. The proposed algorithm operates by
modifying Ψ or α while keeping the other parameters constant
until the optimum point is reached. In the following section we
study the solution space and show that the proposed iterative
algorithm converges to (Ψ∗,α∗).

Next, we study the behavior of the system when Ψ or
α varies. We show that increasing Ψ, while keeping α
constant, has a constructive effect on all sample paths of
delay and queue size. Consider two systems X and Y with
different parameters (ΨX ,αX) and (ΨY ,αY ), respectively,
where αX = (αX

1 , αX
2 , ..., αX

K) and αY = (αY
1 , α

Y
2 , ..., α

Y
K).

Let SX
k (t) and SY

k (t) be the served traffic of the k-th queue in
X and Y , respectively. We assume that input traffic patterns,
Ak(t), k ∈ K and the channel capacity ck(t), k ∈ K are
the same for both systems for t ≥ t0, where t0 is the
time origin at which SX

k (t0) = SY
k (t0), k ∈ K. Then,

QX
k (t0) = QY

k (t0), k ∈ K. Let IX(t) and IY (t) be the
queue indexes which are selected for transmission through
scheduling at time t in the systems X and Y , respectively.

Lemma 1: Suppose that ΨX ≤ ΨY and αX = αY . Then,
in the M-LWWF scheduler, for k ∈ K and t ≥ t0,

QX
k (t) ≥ QY

k (t). (13)

In the M-LWDF scheduler, for k ∈ K and t ≥ t0,

DX
k (t) ≥ DY

k (t). (14)

Proof: The proof is in A.
Since (13) and (14) hold for all sample paths, we can

extend them to expected values. Let the expected val-
ues of QX

k (t), QY
k (t), D

X
k (t) and DY

k (t) be represented by
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qk(Ψ
X , αX), qk(Ψ

Y , αY ), dk(Ψ
X , αX) and dk(Ψ

Y , αY ), re-
spectively. We assume that qk and dk are differentiable with
Ψ and α, which is common for practical setting. Then, we
have the following corollary.

Corollary 2: For k ∈ K,

∂qk
∂Ψ

(Ψ,α) ≤ 0 ∀(Ψ,α), (15)

∂dk
∂Ψ

(Ψ,α) ≤ 0 ∀(Ψ,α). (16)

Now we consider the case when total resource, Ψ does not
change and the weight of one user changes while weights of
other users do not change. Suppose that, in the scheduling in
(4), ΨX = ΨY = Ψ and

αX
l = αl, αY

l = βαl, (17)

αX
j = αY

j = αj j �= l, j ∈ K. (18)

where β > 1.
Let JX

l (t) and JY
l (t) be the indication function for the l-th

user at time t in system X and Y , respectively. Let us also
define the cumulative scheduling function ΦX

l (t) as

ΦX
l (t) =

∫ t

0

JX
l (τ)dτ. (19)

The effect of an increased weight for the l-th user in regime
Y is that the user will be given service earlier and hence the
expected value of ΦY

l (t) will be larger than the expected value
of ΦX

l (t). We show this formally in the sequel.
We first note that our analysis is for average case. Therefore,

we can assume that the channel is stationary and the total
expected capacity available for any source i is given by
ci = Eci(t). Note that this assumption is for convenience and
does not imply any limitation on the analysis. An alternative
would be to first analyze the system conditioned on the
channel capacity, and then average over the channel pdf.

Consider a typical busy period for the whole system in
regime X , and assume without the loss of generality that
the busy period starts at time 0. We first notice that since
the capacity of the channel is the same for both regimes,
the system busy periods are identical in both systems. Now
consider any source i will be served in the periods marked by
the identifier function JX

i (t). For tractability of the problem
we make the following assumptions. The first time that the i-
th source is served in regime X is identified by sXi . A similar
parameter can be defined for regime Y . The consecutive
service times for each source constitute a set of random epochs
that exhibit a stationary independent increment property. This
assumption can be justified by the fact that in between each
two consecutive service of a source other contending traffics
from independent sources are served. A similar assumption is
usually made in queueing theory to enable tractability of the
solution.

With this assumption ΦX
i (t) and ΦY

i (t) are in general Levy
processes, but with our setting of the problem can be modelled
as compound Poisson processes. Therefore, EΦX

i (t) = λ(t−
sXi )EΔ, where λ is the density of the Poisson points and EΔ
is the expected value of the jumps in the Poisson process. We
now make the following observations. First, we argue that
sYl ≤ sXl . This is due to the fact that the larger scheduling

coefficient in Y would give a priority for the l-th source to be
served earlier. With this observation we get that

qXl ≥ qYl , (20)

Since the l-th source is served earlier, some queues might
have a service time in regime Y that is later than their service
time in regime X . Therefore we have

qXj ≤ qYj , j ∈ K, j �= l. (21)

Since the arrival process for the two systems is the same, from
Little’s formula [20] we have

dXl ≥ dYl , (22)

dXj ≤ dYj j ∈ K, j �= l. (23)

Based on the above discussion we have proven the following
lemma.

Lemma 3: Assuming that the cumulative scheduling func-
tion is a compound Poisson process, we have for i ∈ K,

∂qi
∂αi

(Ψ,α) ≤ 0,
∂di
∂αi

(Ψ,α) ≤ 0, ∀(Ψ,α), (24)

Moreover, if i �= j,

∂qj
∂αi

(Ψ,α) ≥ 0,
∂dj
∂αi

(Ψ,α) ≥ 0, ∀(Ψ,α). (25)

III. PARAMETER OPTIMIZATION IN M-LWWF/M-LWDF
SCHEDULING

Based on the properties in the previous section, we investi-
gate the characteristics of the solution space (Ψ,α) for (12).
We define the sets, S and V as follows:

S(Ψ,α) = {k|dk(Ψ,α) ≤ d̂k, k ∈ K}, (26)

V(Ψ,α) = {k|dk(Ψ,α) > d̂k, k ∈ K}. (27)

S(Ψ,α) is the set of users whose delay requirements are
satisfied at a given (Ψ,α) point and V(Ψ,α) is the set of users
whose delay requirements are violated at point (Ψ,α). For the
brevity at presentation, we drop the arguments and denote the
set of satisfied users by S, and the set of unsatisfied users
by V . If all users are in S, then the point (Ψ,α) is called
a feasible point. Otherwise, it is called an infeasible point.
Moreover, if all users are in V , the point (Ψ,α) is called a
fully infeasible point. If (Ψ,α) is an infeasible point but is not
a fully infeasible point, then it is called a partially infeasible
point.

We note that the above definition of feasibility is based
on the mean delay and does not necessarily hold for all
sample paths. In other words, for a feasible point (Ψ,α),
the randomness of the input traffic and the capacity curve
ck(t) can create sample paths of delay Dk(t), for which
Dk(t) > d̂k for some t and k. However, if (Ψ,α) is feasible
then E[Dk(t)] = dk(Ψ,α) ≤ d̂k.

We define the hyperplane Ω(Ψ),Ψ ∈ [0, 1] in the solution
space as:

Ω(Ψ) = {(Ψ,α)|α ∈ R
K
+ }. (28)

Also, we define F(Ψ) and I(Ψ) as:

F(Ψ) = {α|(Ψ,α) is feasible,α ∈ R
K
+ }, (29)

I(Ψ) = {α|(Ψ,α) is fully infeasible,α ∈ R
K
+ }. (30)
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Theorem 4: If Ψ1 ≤ Ψ2, then

F(Ψ1) ⊆ F(Ψ2), (31)

I(Ψ1) ⊇ I(Ψ2). (32)

Proof: Suppose that (Ψ1,α) is a feasible point. Then,
dk(Ψ1,α) ≤ d̂k k ∈ K. On the other hand, from Corollary 2,
dk(Ψ2,α) ≤ dk(Ψ1,α) k ∈ K since Ψ2 ≥ Ψ1. Therefore,
(Ψ2,α) is a feasible point, which proves (31).

In a similar way, we can show that if (Ψ2,α) is a fully
infeasible point, then (Ψ1,α) is a fully infeasible point, which
proves (32).

The above Theorem shows that the set of feasible points
does not become smaller when Ψ increases. Therefore, α∗

should belong to the intersection of all feasible sets for Ψ ≥
Ψ∗,

α∗ ∈
⋂

Ψ≥Ψ∗
F(Ψ). (33)

Similarly, the set of fully infeasible points does not become
smaller when Ψ decreases.

Each point (Ψ,α) may be a feasible point, a partially
infeasible point or a fully infeasible point. The following
Theorem indicates that there is not a hyperplane Ω(Ψ) that
includes both feasible and fully infeasible points.

Theorem 5: Given Ψ, F(Ψ) = ∅ if I(Ψ) �= ∅ and vice
versa.

Proof: The proof is in B.
Suppose that feasible points exist in Ω(Ψ) and Ψ′ ≥ Ψ.

From Theorem 4, there exist feasible points in Ω(Ψ′). More-
over, from Theorem 5, there cannot exist fully infeasible points
in Ω(Ψ′). In a similar argument, if fully infeasible points exist
in Ω(Ψ) and Ψ′ ≤ Ψ, there exist fully infeasible points in
Ω(Ψ′) and there cannot exist a feasible point in Ω(Ψ′). In
summary, the optimal point is located in Ω(Ψ) with minimum
Ψ such that Ω(Ψ) has a feasible set.

We now show that we can reach feasible region or fully
infeasible region with a proper parameter adaptation when
F(Ψ) �= ∅ or I(Ψ) �= ∅ in Ω(Ψ). For this, we consider the
following continuous nonlinear control dynamics:

d

dt
αk(t) =

{
−αk(t) if k ∈ S(t),
αk(t) if k ∈ V(t), (34)

where α(t) is assumed to be continuous and differentiable for
all t, and S(t) and V(t) are the set of satisfied and unsatisfied
users at time t. We now prove that this control system is
asymptotically stable at the optimal solution, which means
that we can reach the optimal solution (Ψ∗, α∗) by iteration
regardless of the initial point (Ψ, α).

Lemma 6: The dynamics in (34) have the following prop-
erties:

d

dt
di(t) ≥ 0 if i ∈ S(t), (35)

d

dt
di(t) ≤ 0 if i ∈ V(t). (36)

Proof: The dynamics in (34) can be expressed as follows.
As δt → 0,

αk(t+ δt) =

{
(1− δt)αk(t) if k ∈ S(t)
(1 + δt)αk(t) if k ∈ V(t). (37)

Note that we can obtain the same performance when all
αk(t)’s are scaled by the same value.

αk(t+ δt) =

{
αk(t)(1− δt)(1 − δt) if k ∈ S(t),
αk(t)(1 + δt)(1 − δt) if k ∈ V(t). (38)

If δt goes to zero in (38), then

d

dt
αk(t) =

{
−2αk(t) if k ∈ S(t),
0 if k ∈ V(t). (39)

Therefore, (34) and (39) give the same performance.
We consider the case that i ∈ V(t). It follows from (39)

and Lemma 3 that

d

dt
di(t) =

∑
k∈K

∂di
∂αk

dαk

dt
=

∑
k∈S(t)

∂di
∂αk

(−2αk(t)) ≤ 0.

(40)
In a similar way, we can show that if i ∈ S(t),

d

dt
di(t) ≥ 0. (41)

Theorem 7: Suppose that there exists a feasible region (or
a fully infeasible region) in Ω(Ψ). If α(t) changes according
to the continuous dynamics (34), the feasible region (or the
fully infeasible region) is globally asymptotically stable.

Proof: Suppose that there exists a feasible region. Then,
from Theorem 5 there is no fully infeasible point. We adopt
the following Lyapunov function:

V (α) =
∑
k∈K

([dk(α)− d̂k]
+)2, (42)

where [x]+ = x if x ≥ 0, and [x]+ = 0 if x < 0. Note that
V (α) = 0 if α is in feasible region, and V (α) > 0 if α is in
partially infeasible region. From (40),

dV

dt
=

∑
k∈V

2[dk(α)− d̂k]
+ d

dt
dk(t) ≤ 0. (43)

If V �= ∅, all users in V increase αk. Therefore, the partially
infeasible region with dV

dt = 0 is not included in the invariant
set. Hence, feasible region is globally asymptotically stable
from LaSalle’s Theorem [21].

Suppose that there exists a fully infeasible region. In a
similar argument, we can show that the fully infeasible region
is globally asymptotically stable using the following Lyapunov
function:

V (α) =
∑
k∈K

([d̂k − dk(α)]+)2. (44)

This completes the proof.

IV. PARAMETER ADAPTATION IN OFDMA SYSTEMS

Consider a cellular communication system employing
OFDMA as the multiple access technique [22, 23]. The tempo-
ral structure of the system is divided in a time division duplex
(TDD) mode into a downlink frame and an uplink frame.
A frame is divided into several subcarriers in the frequency
domain and subcarriers are grouped into M subchannels. A
frame is also divided into symbols in temporal domain. A slot
is a rectangular resource consisting of one subchannel and one
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Fig. 1. Frame and super-frame structure.

symbol. One frame for downlink (uplink) has M subchannels
and LDL (LUL) symbols, and thus, each frame has M ∗LDL

(M ∗ LUL) slots. We introduce a superframe which has NS

frames. The OFDMA frame structure is depicted in Figure 1.
The cell base station (BS) serves K users with targetted

delay requirement. The BS tries to use the minimum resources
(slots) needed to satisfy the targetted QoS requirements. We
define the frame occupancy ratio Ψ ∈ [0, 1] as the ratio
of symbols occupied by the QoS traffic per frame to the
overall frame size. Then, ΨDL ∗ LDL and ΨUL ∗ LUL are
the needed resources for the downlink frame and the uplink
frame, respectively.

Let ck(j, s) be the number of bits that user k, k ∈ K,
would be able to receive if it is scheduled to use slot s in
frame j. These channel qualities can change on frame basis
for all users, and the values ck(j, s) ∀ k, s, are reported to
the base station before each frame j. Note that the slots in the
same subchannel in each frame have the same channel quality.
Let I(j, s) be the user index which is scheduled at slot s in
the j-th frame. Let Dk(j, s) and Qk(j, s) be the head-of-line
delay and the queue occupancy in the k-th queue at slot s in
frame j, respectively. Then, M-LWDF and M-LWWF can be
expressed as:

I(j, s) = argmax
k∈K

(αkDk(j, s)ck(j, s)) , (45)

I(j, s) = argmax
k∈K

(αkQk(j, s)ck(j, s)) . (46)

We fix the parameters (Ψ,α) during one super-frame with
length Ts. Suppose that the system starts with parameters
(Ψ(0),α(0)). During each super-frame, the average delay val-
ues are estimated. By the end of the super-frame, the estimated
performance metrics are compared to their required levels
and then parameter adaptation is executed. Let dk(n) be the
estimated average delay of user k during the n-th superframe,
[(n−1)Ts, nTs), where the parameters (Ψ(n− 1),α(n− 1))
are used. We define S(n) and V(n) as follows:

S(n) = {k|dk(n) ≤ d̂k, k ∈ K}, (47)

V(n) = {k|dk(n) > d̂k, k ∈ K}. (48)

Given Ψ, starting in a partially infeasible region in Ω(Ψ),
we propose an algorithm so that a feasible region or a fully
infeasible region can be reached if it exists. The proposed

Input: (Ψ(n− 1),α(n− 1)), S(n), V(n)
Output: (Ψ(n),α(n))
begin

if V(n) = ∅ then
Ψ(n) = Ψ(n− 1)(1− η);
α(n) = α(n− 1);

else if S(n) = ∅ then
Ψ(n) = Ψ(n− 1)(1 + η);
α(n) = α(n− 1);

else if i = Np then
Ψ(n) = Ψ(n− 1)(1 + η);
α(n) = α(n− 1);
i = 0;

else
Ψ(n) = Ψ(n− 1);
for each k in S(n) do

αk(n) = αk(n− 1)(1− ε);
end
for each k in V(n) do

αk(n) = αk(n− 1)(1 + ε);
end
i = i+ 1;

end
Algorithm 1: Parameter adaptation algorithm

algorithm has two main steps. Starting from a partially infea-
sible point in the solution space, for fixed Ψ, we change α
so that either a fully infeasible or a feasible point is reached.
Then, for fixed α, we decrease Ψ if a feasible point was found
in the first stage. On the other hand, we increase Ψ if a fully
infeasible point was found. If we cannot find feasible region
or fully infeasible region in a certain number of adaptation
steps, we increase Ψ. We iterate this procedure until a point
arbitrarily close to (Ψ∗,α∗) is reached.

If both S(n) and V(n) are not empty, then the system is in
a partially infeasible point. In this case, α(n) is updated as
follows:

αk(n) =

{
αk(n− 1)(1− ε) if k ∈ S(n)
αk(n− 1)(1 + ε) if k ∈ V(n) (49)

where ε is a sufficiently small positive constant. If we arrive at
a feasible region, we reduce the frame occupancy ratio Ψ(n)
as follows:

Ψ(n) = Ψ(n− 1)(1− η) (50)

where η is a positive constant. If we arrive at a fully infeasible
region or we cannot arrive at a feasible region or a fully
infeasible region in Np updates of α, we increase Ψ as
follows:

Ψ(n) = Ψ(n− 1)(1 + η) (51)

The proposed procedure is shown in Algorithm 1.
The dynamics in (49) is the discrete time version of (34).

In practice, we should measure dk(α), k ∈ K, and thus,
there is a measurement error. However, using the stochastic
approximation theory [24], it can be shown that the feasible
region or fully infeasible region can be reached in a globally
asymptotically stable manner with the dynamics in (49) if
ε → 0.
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TABLE I
SYSTEM PARAMETERS

cell radius 1km
total power 20W

system bandwidth 10MHz
number of sub-carriers per symbol 1024

BS antenna gain 15dB
noise level (N0) −174dBm/Hz

TABLE II
SIMULATION PARAMETERS FOR SCENARIO 1

Class 1 2 3 4
Number of users 2 4 5 10

Rate (kbps) 1000 200 100 50
Velocity (km/h) 0 0 0 0

d̂k(sec) 1 0.2 0.1 0.01

If the input traffic patterns and the air channel capacity
do not vary, we can arrive at a neighborhood of the optimal
solution (Ψ∗,α∗) with an arbitrarily small radius if ε and η
are properly selected. However, if the input traffic patterns and
the channel capacities change, the proposed algorithm traces
the optimal solution with adequate η and ε. In the following
section, we will show that our algorithm works well in a
dynamically varying environment.

V. SIMULATION RESULTS

A. Simulation Environment

We consider downlink transmission in a mobile WiMAX
base station. The number of OFDMA subcarriers is 1024
where only 768 subcarriers are used for data transmission
and the rest of the subcarriers are used for guard bandwidth.
Each 48 data subcarriers are grouped into one subchannel
leading to a total of 16 subchannels. The frame consists
of 42 OFDMA symbols and 28 symbols (=LDL) are used
for downlink transmission. Then, there are 448 slots in each
downlink frame. We construct the wireless environment with
the system parameters in Table I. Although we consider only
downlink, a similar approach is possible for uplink.

We adopt the modified Okumura-Hata model as the propa-
gation model [25] expressed in dB as follows:

PL(r) = 128.1 + 37.6 log10(r)(dB), (52)

where r is in km. Shadowing has a log-normal distribution
with mean 0 and standard deviation 10, which has correlation
0.5 among different cells. The multi-path fading parame-
ter varies every 5ms (frame length) and is exponentially
distributed with mean 1. We ignore inter-frame correlation
of fading. We consider only cochannel interference of six
neighbor cells in the first tier. We assume that all the neighbor
cells are fully loaded, that is, they are transmitting packets at
all times.

Users are divided into four classes with different input
traffic parameters and different average delay requirements.
We consider two scenarios. In Scenario 1, each user generates
a Poisson traffic with fixed packet size 1kbyte. All mobiles

TABLE III
SIMULATION PARAMETERS FOR SCENARIO 2

Class 1 2 3 4
Number of users 4 8 10 20

Rate during ON interval (kbps) 10000 2000 1000 500
E(TON)(sec) 0.1 0.1 0.1 0.1
E(TOFF )(sec) 0.9 0.9 0.9 0.9

Shape parameter of TON 1.5 1.5 1.5 1.5
Shape parameter of TOFF 1.5 1.5 1.5 1.5

Velocity (km/h) 0 4 30 120
d̂k(sec) 1 0.2 0.1 0.01
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Fig. 2. Comparison of required Ψ (Scenario 1).

are located in random positions inside the coverage area of
the cell and all users are stationary during the simulation.

In Scenario 2, traffics are generated by ON/OFF sources,
where ON and OFF intervals, TON and TOFF , are Pareto
distributed. During TON , packets are generated uniformly
with the fixed packet size, 1kbyte. Each user moves with
its velocity in random directions every 10sec. If the user
moves out of the cell, the user enters the cell again in the
opposite direction of the cell. Thus, the number of users in
the cell does not change. Tables II and III show different
simulation parameters in two scenarios. If the integration of
autocorrelation function of traffic amounts during unit time is
finite, then the process is short range dependent. Otherwise, if
it is infinite, the process is long range dependent [26]. Note
that traffic streams of Scenario 1 have short range dependence,
and traffic streams of Scenario 2 have long range dependence.

B. Dynamic Parameter Adaptation

We consider a dynamic environment where parameters
(Ψ,α) are adapted based on the measured average delay. The
super-frame length is set to 200msec. The step size for α and
Ψ are set as ε = 0.1 and η = 0.01. If no packets are served
for a flow during a super-frame, we do not change the weight
of that flow.

First, using the simulation parameters in Scenario 1, we
compare the performance of our parameter adaptation algo-
rithm for M-LWDF and M-LWWF. For each of the schedulers,
Fig. 2 depicts the variation of the required resource. It takes
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Fig. 3. Average delay variation (Scenario 1).

about 20sec to converge. After convergence, the mean and the
standard deviation of required Ψ for M-LWDF and M-LWWF
are (0.3953, 0.0280) and (0.3944, 0.0211), respectively, which
shows that the required Ψ for M-LWDF and M-LWWF are
similar.

Fig. 3 shows the average delay for all users of each class.
The average delay fluctuates about the target average delay,
which means that the system is in the optimal state. The
average delay fluctuation for stringent delay requirement in
the M-LWWF scheduler is higher than that for the M-LWDF
scheduler. The reason is that M-LWWF uses queue size rather
than delay for scheduling. Fig. 4 shows the weight variation
for each scheduler, where weights are normalized so that the
sum of weights is equal to 1.

Here, we report the results for Scenario 2 with M-LWDF
scheduler. Although the mean arrival rate is the same as
Scenario 1, the input traffic with self-similarity is bursty.
Moreover, channel capacity of each user changes dynamically
since users move according to the velocity in Table III. Fig. 5
(a) shows the adaptation of Ψ where the mean and standard
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Fig. 4. Weight variation (Scenario 1).

deviation of required Ψ are 0.3862 and 0.0852, respectively.
Compared with the results in Fig. 2, the variation of the
necessary resource Ψ for Scenario 2 is higher than that for
Scenario 1, which is due to the burstiness of traffic and
user’s mobility. Fig. 5 (b) shows the adjustment of weight
values for one of the users in each class. The weight values
change dynamically according to the input traffic variation
and channel capacity variation. Fig. 5 (c) shows the average
delay fluctuation according to the adaptation of Ψ and weight
values. The fluctuation is higher than that in Fig. 3 due to user
mobility and traffic burstiness.

VI. CONCLUSION

In this paper, we have investigated the problem of dynamic
parameter adaptation for throughput optimal opportunistic
schedulers. We have first modeled parameter adaptation as an
optimization problem and showed a detailed description of its
solution space structure and characteristics for opportunistic
scheduling algorithms. Based on the solution space structure,
we have proposed a practical dynamic parameter adaptation
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Fig. 5. Parameter and Performance Variation with M-LWDF Scheduling in
Scenario 2.

algorithm that tracks the system dynamics with the necessary
parameters. We have also proved the convergence of the
algorithm to the optimal solution for a given channel and
queue state.

APPENDIX A
PROOF OF LEMMA 1

First, we consider the M-LWWF scheduling. We define the
following functions for t ≥ t0 and k ∈ K:

fk(t) = QX
k (t)−QY

k (t). (53)

Since QX
k (·), QY

k (·), k ∈ K are piecewise linear functions,
fk(·) is a piecewise linear function, and thus, f ′

k(·) is a
piecewise constant function. Since the input traffic patterns
for X and Y , Ak(·), k ∈ K, are the same, it follows from (2)
that

fk(t) = SY
k (t)− SX

k (t), (54)

and fk(t0) = 0, k ∈ K. Since SX
k (·) and SY

k (·) are continuous
functions, fk(·) is continuous. The condition in (13) can be
expressed as:

fk(t) ≥ 0, t ≥ t0, k ∈ K. (55)

From (6) and (54),

f ′
k(t) = lim

h→0+

fk(t+ h)− fk(t)

h

= ΨY JY
k (t)ck(t)−ΨXJX

k (t)ck(t). (56)

Let us assume that the above claim (55) is not true and let
τmin be the first time instant at which fk(t) becomes negative
for at least one k, that is,

τmin = inf
t≥t0

{t|fk(t) < 0, ∃k ∈ K}. (57)

Since fk(·) is continuous and piecewise linear, and f ′
k(·) is

piecewise constant, there exist δ(> 0) and a set Θ(�= ∅) such
that if k ∈ Θ,

fk(τmin) = 0, (58)

fk(t) < 0 for τmin < t < τmin + δ (59)

f ′
k(t) < 0 for τmin < t < τmin + δ, (60)

and if k �∈ Θ,

fk(t) ≥ 0 for t < τmin + δ. (61)

Suppose that k ∈ Θ and τmin ≤ t < τmin + δ for which
ΩX(t) and ΩY (t) do not change. From (56) and (60), JX

k (t) �=
0. Thus, k ∈ ΩX(t). Therefore,

Θ ⊂ ΩX(t). (62)

From (59),
QX

k (t) < QY
k (t). (63)

Moreover, since k ∈ ΩX(t),

αkQ
X
k (t)ck(t) ≥ max

i∈K
αiQ

X
i (t)ci(t). (64)

If j ∈ ΩY (t),

αkQ
Y
k (t)ck(t) ≤ αjQ

Y
j (t)cj(t). (65)
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Combining (63), (64), (65), for j ∈ ΩY (t),

αjQ
X
j (t)cj(t) < αjQ

Y
j (t)cj(t). (66)

Thus, from (53),

fj(t) < 0 for j ∈ ΩY (t). (67)

Since fk(·), k ∈ K are continuous and fk(t) ≥ 0 for t ≤
τmin, fj(τmin) = 0 and f ′

j(t) < 0, τmin < t < τmin + δ if
j ∈ ΩY (t). Thus, ΩY (t) ⊂ Θ. Therefore, from (62), ΩY (t) ⊂
ΩX(t). For j ∈ ΩY (t),

f ′
j(t) =

ΨY

αj(cj(t))

⎛
⎝ ∑

i∈ΩY (t)

1

αi(ci(t))2

⎞
⎠

−1

− ΨX

αj(cj(t))

⎛
⎝ ∑

i∈ΩX (t)

1

αi(ci(t))2

⎞
⎠

−1

≥ 0. (68)

Since ΩY (t) ⊂ Θ, there exists j such that f ′
j(t) ≥ 0, j ∈ Θ,

which contradicts (60) and proves (55).
Now, we consider the M-LWDF scheduling. We define the

following function for t ≥ t0 and k ∈ K:

gk(t) = DX
k (t)−DY

k (t). (69)

Then, the condition in (14) can be expressed as:

gk(t) ≥ 0, t ≥ t0, k ∈ K. (70)

From (3),

gk(t) = Hk(S
Y
k (t))−Hk(S

X
k (t)), (71)

and gk(t0) = 0, k ∈ K. Note that gk(·) is a piecewise constant
function. We define tXk,i and tYk,i as:

tXk,i = inf
t≥t0

{t|SX
k (t) = Ak,i}, (72)

tYk,i = inf
t≥t0

{t|SY
k (t) = Ak,i}. (73)

Then, the claim in (70) can be restated as:

tXk,i ≥ tYk,i ∀k, i. (74)

Suppose that the claim (70) is not true. Then, there exist l
and m such that

tXl,i ≥ tYl,i, i < m, (75)

tXl,m < tYl,m, (76)

DX
k (t) ≤ DY

k (t), t < tXl,m, k ∈ K. (77)

Note that

Al,m − Al,m−1 = SY
l (tYl,m)− SY

l (tYl,m−1)

= SX
l (tXl,m)− SX

l (tXl,m−1). (78)

Since SX
l (·) and SY

l (·) are non-decreasing functions, from
(75), (76), (78),

gl(t
X
l,m)− gl(t

X
l,m−1)

= (SY
l (tXl,m)− SY

l (tXl,m−1))− (SX
l (tXl,m)− SX

l (tXl,m−1))

< 0. (79)

Note that for t ∈ [tXl,m−1, t
X
l,m),

DX
l (t) = DY

l (t), (80)

DX
k (t) ≥ DY

k (t) k ∈ K. (81)

Therefore, if αlD
X
l (t)cl(t) ≥ maxk∈K αkD

X
k (t)ck(t),

αlD
Y
l (t)cl(t) ≥ maxk∈K αkD

Y
k (t)ck(t). Suppose that

αjD
X
j (t)cj(t) = αlD

X
l (t)cl(t), j �= l, then we can break ties

by comparing cl(t) and cj(t). If cl(t) = cj(t), the indexing
order is used to break ties. For any case, if JX

l (t) = 1, then
JY
l (t) = 1. Thus,

gl(t
X
l,m)− gl(t

X
l,m−1)

= ΨY

∫ tXl,m

tXl,m−1

JY
l (t)cl(t)dt −ΨX

∫ tXl,m

tXl,m−1

JX
l (t)cl(t)dt

≥ 0. (82)

which contradicts (79) and proves (70).

APPENDIX B
PROOF OF THEOREM 5

Let αX = (αX
1 , αX

2 , . . . , αX
K) be a fully infeasible point in

Ω(Ψ). Then,
dk(α

X) > d̂k k ∈ K. (83)

We choose a point αY = (αY
1 , α

Y
2 , . . . , α

Y
K) in Ω(Ψ). We

introduce a vector αZ as:

αZ =

(
αY
m

αX
m

)
αX , (84)

where

m = argmin
k∈K

(
αY
k

αX
k

)
. (85)

Then, for both schedulers M-LWWF and M-LWDF, we have,

dk(α
Z) = dk(α

X) k ∈ K. (86)

On the other hand,

αZ
k =

αY
m

αX
m

αX
k ≤ αY

k , ∀k, (87)

and
αZ
m = αY

m. (88)

Therefore,

αY = αZ +
∑
k �=m

(αY
k − αZ

k )e
k. (89)

Note that αY
k − αZ

k ≥ 0 for all k from (87). Therefore,
Lemma 3 shows that

dm(αY ) ≥ dm(αZ). (90)

Combining (83), (86) and (90),

dm(αY ) > d̂m, (91)

which shows that αY is not a feasible point.
So far, we have proven that, if there exists a feasible region,

there cannot exist a fully infeasible region. We now show
the opposite direction. Suppose that there is a fully infeasible
region. If a feasible region exists, then as per the first part of
the proof, there cannot exist a fully infeasible region, which
is a contradiction and the opposite direction is proved.
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