
Computer Network
Modelling #2

PhD. Antonenko V.A.

Goals Of This Lecture

 Introduce Docker
 Introduce Mininet + Docker
 Introduce Mininet + Docker + Swarm

25.10.2021

Introduction to Docker

25.10.2021

• A dotCloud (PAAS provider) project

• Initial commit January 18, 2013

• Docker 0.1.0 released March 25, 2013

• dotCloud pivots to docker inc. October 29, 2013

DOCKER HISTORY ……

25.10.2021

• Open platform for developers and sysadmins to
build, ship and run distributed applications

• Can run on popular 64-bit Linux distributions
with kernel 3.8 or later

• Supported by several cloud platforms including
Amazon EC2, Google Compute Engine, and
Rackspace.

What is Docker ?

25.10.2021

• Light-Weight
oMinimal overhead (cpu/io/network)
o Based on Linux containers
oUses layered filesystem to save space (AUFS/LVM)
oUses a copy-on-write filesystem to track changes

• Portable
oCan run on any Linux system that supports LXC (today).
o 0.7 release includes support for RedHat/Fedora family.
oRaspberry pi support.
o Future plans to support other container tools (lmctfy, etc.)
o Possible future support for other operating systems (Solaris, OSX,

Windows?)

• Self-sufficient
o A Docker container contains everything it needs to run
oMinimal Base OS
o Libraries and frameworks
o Application code
o A docker container should be able to run anywhere that Docker can run.

Features….

25.10.2021

The Challenge……

25.10.2021

The Matrix From Hell……

25.10.2021

Cargo Transport Pre-1960……

25.10.2021

Also a Matrix from
Hell……

25.10.2021

Solution: Intermodal Shipping Container……

25.10.2021

Docker is a Container System for Code……

25.10.2021

Docker Eliminates the Matrix from Hell……

25.10.2021

Why it Works: Separation of Concerns……

25.10.2021

•  Docker Engine
 –  CLI
 –  Docker Daemon
 –  Docker Registry
•  Docker Hub
 –  Cloud service
 •  Share Applications
 •  Automate workflows
 •  Assemble apps from components
• Docker images
• Docker containers

Docker Architecture……

25.10.2021

• NOT A VHD
• NOT A FILESYSTEM
• uses a Union File System
• a read-only Layer
• do not have state
• Basically a tar file
• Has a hierarchy
 •  Arbitrary depth
•  Fits into the Docker Registry

Docker images……

25.10.2021

https://docs.docker.com/terms/layer/#ufs-def
https://docs.docker.com/terms/layer/#layer-def

Units of software delivery (ship it!)

 ● run everywhere
 – regardless of kernel version
 – regardless of host distro
 – (but container and host architecture must match*)

 ● run anything
 – if it can run on the host, it can run in the container
 – i.e., if it can run on a Linux kernel, it can run

*Unless you emulate CPU with qemu and binfmt

Docker Containers...

25.10.2021

Containers before Docker……

25.10.2021

Containers after Docker ……

25.10.2021

How does Docker work ?

• You can build Docker images that hold your applications

• You can create Docker containers from those Docker images to run your
applications.

• You can share those Docker images via Docker Hub or your own registry

25.10.2021

Virtual Machine Versus Container……

25.10.2021

Virtual Machine Versus Container……

25.10.2021

•  The Life of a Container
 –  Conception
 •  BUILD an Image from a Dockerfile
 –  Birth
 •  RUN (create+start) a container
 –  Reproduction
 •  COMMIT (persist) a container to a new image
 •  RUN a new container from an image
 –  Sleep
 •  KILL a running container
 –  Wake
 •  START a stopped container
 –  Death
 •  RM (delete) a stopped container
•  Extinction
 –  RMI a container image (delete image)

Docker Container Lifecycle ……

25.10.2021

•  Kernel Feature
•  Groups of processes
•  Control resource allocations
 –  CPU
 –  Memory
 –  Disk
 –  I/O
•  May be nested

Linux Cgroups ……

25.10.2021

•  Kernel Feature
•  Restrict your view of the system
 –  Mounts (CLONE_NEWNS)
 –  UTS (CLONE_NEWUTS)
 •  uname() output
 –  IPC (CLONE_NEWIPC)
 –  PID (CLONE_NEWPID)
 –  Networks (CLONE_NEWNET)
 –  User (CLONE_NEWUSER)
 •  Not supported in Docker yet
 •  Has privileged/unprivileged modes today
•  May be nested

Linux Kernel Namespaces ……

25.10.2021

•  Like a Makefile (shell script with keywords)
•  Extends from a Base Image
•  Results in a new Docker Image
•  Imperative, not Declarative
• A Docker file lists the steps needed to build an images
• docker build is used to run a Docker file
• Can define default command for docker run, ports to expose, etc

Dockerfile ……

25.10.2021

Docker CLI Commands (v1.1.2)……

25.10.2021

Docker + Mininet

25.10.2021

Conainernet

• Containernet is a fork of the famous Mininet network
emulator and allows to use Docker containers as hosts
in emulated network topologies.

• Enables interesting functionalities to build
networking/cloud emulators and testbeds. One example
for this is the NFV multi-PoP infrastructure emulator
 which was created by the SONATA-NFV project and is
now part of the OpenSource MANO (OSM) project.

• Containernet is actively used by the research
community, focusing on experiments in the field of
cloud computing, fog computing, network function
virtualization (NFV), and mobile edge computing (MEC).

25.10.2021

http://mininet.org/
https://www.docker.com/
https://github.com/sonata-nfv/son-emu
http://sonata-nfv.eu/
https://osm.etsi.org/

Create a custom topology

25.10.2021

Run emulation and interact with
containers

• Containernet requires root access to configure the
emulated network described by the topology script:

• After launching the emulated network, you can
interact with the involved containers through Mininet’s
interactive CLI as shown with the ping command in
the following example:

25.10.2021

Swarm mode overview

25.10.2021

Swarm mode overview
• Cluster management integrated with Docker Engine: Use the Docker

Engine CLI to create a swarm of Docker Engines where you can deploy
application services. You don’t need additional orchestration software to
create or manage a swarm.

• Decentralized design: Instead of handling differentiation between node
roles at deployment time, the Docker Engine handles any specialization at
runtime. You can deploy both kinds of nodes, managers and workers, using
the Docker Engine. This means you can build an entire swarm from a single
disk image.

• Declarative service model: Docker Engine uses a declarative approach
to let you define the desired state of the various services in your
application stack. For example, you might describe an application
comprised of a web front end service with message queueing services and
a database backend.

• Scaling: For each service, you can declare the number of tasks you want
to run. When you scale up or down, the swarm manager automatically
adapts by adding or removing tasks to maintain the desired state.

25.10.2021

• Desired state reconciliation: The swarm manager node constantly
monitors the cluster state and reconciles any differences between
the actual state and your expressed desired state. For example, if
you set up a service to run 10 replicas of a container, and a worker
machine hosting two of those replicas crashes, the manager creates
two new replicas to replace the replicas that crashed. The swarm
manager assigns the new replicas to workers that are running and
available.

• Multi-host networking: You can specify an overlay network for
your services. The swarm manager automatically assigns addresses
to the containers on the overlay network when it initializes or
updates the application.

• Service discovery: Swarm manager nodes assign each service in
the swarm a unique DNS name and load balances running containers.
You can query every container running in the swarm through a DNS
server embedded in the swarm.

25.10.2021

• Load balancing: You can expose the ports for services to
an external load balancer. Internally, the swarm lets you
specify how to distribute service containers between nodes.

• Secure by default: Each node in the swarm enforces TLS
mutual authentication and encryption to secure
communications between itself and all other nodes. You
have the option to use self-signed root certificates or
certificates from a custom root CA.

• Rolling updates: At rollout time you can apply service
updates to nodes incrementally. The swarm manager lets
you control the delay between service deployment to
different sets of nodes. If anything goes wrong, you can roll
back to a previous version of the service.

25.10.2021

• Open a terminal and ssh into the machine
where you want to run your manager
node. If you use Docker Machine, you can
connect to it via SSH using the following
command:

• Run the following command to create a
new swarm:

25.10.2021

• the --advertise-addr flag configures the manager node to
publish its address as 192.168.99.100. The other nodes in the
swarm must be able to access the manager at the IP address.

• The output includes the commands to join new nodes to the
swarm. Nodes will join as managers or workers depending on
the value for the --token flag.

25.10.2021

• Run docker info to view the current
state of the swarm:

25.10.2021

• Run the docker node ls command to view information
about nodes:

• The * next to the node ID indicates that you’re
currently connected on this node.

• Docker Engine swarm mode automatically names the
node for the machine host name. The tutorial covers
other columns in later steps.

25.10.2021

• https://habr.com/ru/company/redmad
robot/blog/318866/

• https://docs.docker.com/swarm/overv
iew/

• https://docs.docker.com/engine/swar
m/swarm-tutorial/create-swarm/

25.10.2021

https://habr.com/ru/company/redmadrobot/blog/318866/
https://habr.com/ru/company/redmadrobot/blog/318866/
https://docs.docker.com/swarm/overview/
https://docs.docker.com/swarm/overview/
https://docs.docker.com/engine/swarm/swarm-tutorial/create-swarm/
https://docs.docker.com/engine/swarm/swarm-tutorial/create-swarm/

Thank You for Attention!

25.10.2021

