
Formal methods in computer 
networks

E.P. Stepanov



References:

Qadir, J.; Hasan, O.,

Applying Formal Methods to Networking: 
Theory, Techniques, and Applications,

Communications Surveys & Tutorials,
IEEE , vol.17, no.1, pp.256-291, 2015

2



Formal methods

• Formal methods – such methods of 
specification, design and analysis of the
system properties that have a rigorous 
mathematical justification

• Verification – checking the conformity of 
system properties to a given specification

• Synthesis - building a system whose properties 
satisfy a given specification

3



Components of the formal 
verification method

• Model description language - a method of 
mathematical description of the device and 
characteristics of the analyzed system

• Specification language - a way to formally 
describe the properties of an analyzed system

• Verification method - an algorithm for 
checking the conformity of a system model 
with a given specification

4



Components of the formal 
verification method

5

Target system System properties

Formal model Formal specification

Verification
algorithm

System is
correct!

System is
incorrect!



Peterson's Algorithm(1981)

6

Global variables:
bool want1, want2; // process 𝑥 ∈ {1,2} works with critical section
int turn; // process «turn» has priority access to the critical section
// The change in the value of each variable occurs atomically

want1 = false, want2 = false, turn = 1; // initial value

Process №1:
while (true) {

<noncritical section>
want1 := true;
turn := 2; // give way to 2
while (want2 and turn == 2)
do { /* busy wait */ };

<critical section>
want1 := false;

}

Process №2:
while (true) {

<noncritical section>
want2 := true;
turn := 1; // give way to 1
while (want1 and turn == 1)

do { /* busy wait */ };
<critical section>
want2 := false;

}

Input



Peterson's Algorithm (1981)

7

1CS 1NCS 1W21W1

want1 := true turn := 2

not (want2 = true or turn = 2)

want1 := false

2CS 2NCS 2W22W1

want2 := true turn := 1

not (want1 = true and turn = 1)

want2 := false

Formal model

* An inner loop condition can be represented by two intermediate states in accordance 
with the rules for checking logical expressions

(short-circuit evaluation)



Peterson's Algorithm (1981)

• The system is described by a finite state 
machine obtained by a superposition of 
automata for each of the processes

• System state - a set of shared variable values
and states of each process

– What is the total number of states?

8

Formal model



9

Transition graph for a system 
of two processes:
total 20 states



Peterson's Algorithm (1981)

• The properties of a system, expressed by the relationships 
between its states, can be defined by the temporal logic 
formulas LTL :

• 𝑋𝜙 (neXt)

• 𝐹𝜙 (Future)

• 𝐺𝜙 (Globally)

• 𝜓𝑈𝜙 (Until)

10

Properties specification

𝜙𝜙𝜙

𝜙𝜓𝜓

𝜙

𝜙



Peterson's Algorithm (1981)

• Safety
There will never be a situation in which both processes are 
simultaneously inside the critical section
Verification == Checking reachability

𝐆¬(1𝐶𝑆 ∧ 2𝐶𝑆)

• Liveness
The process who wants to get into the critical section sooner 
or later will get there
Verification == Cycle search

𝑮(1𝑁𝐶𝑆 → 𝑭1𝐶𝑆) ∧ 𝐆(2𝑁𝐶𝑆 → 𝐅2𝐶𝑆)

11

Properties specification



Formal verification vs. 
Testing

12

Problem Method Efficiency

Formal Verification Testing

Error search medium high

Correctness proof high low

Usage complexity high low

Error type Frequent Rare

Harmless Testing ---

Critical Testing, Formal
verification

Formal verification



Target system types

• Transforming systems

– Transform input to output

– Can be represented by a table or formula

– Switch with static rules

• Responsive systems

– Behavior depends on impact history

– Can be represented by a state machine

– Controller Reactive Program

13



The main properties of 
mathematical models

• Abstractness

The model should be a simplification of the system

• Adequacy

The model should reflect the properties of the system.

• Compactness

The size and structural complexity of the model affects 
the complexity of solving the verification problem.

Symbolic Methods - the model does not explicitly lists all 
the system state

14



Some examples of formal 
models

• Tables

• Graph representations

• Boolean formulas

• Binary Decision Diagrams

• Labeled Transition Systems

• Time automata

• Petri nets

15



The main properties of 
specification languages

• Expressive power

The language should cover the studied properties

• Problem solving complexity

Formula equivalence check

Checking consistency of formulas

Formal verification

• Compatible with model

The complexity of verification depends on the 
consistency of the model with the specification language

16



Some examples of 
specification languages

• Propositional logic

• First-Order Predicate Logic

• Higher Order Logic

• Logic of Hoar

• Modal logic

• Temporal logic

17



Formal Verification Methods

• Non-automatic

Manual Proof

• Semi-automatic

Theorem proving

Semisolvability

• Automatic

Model checking

combinatorial explosion

18



The historical path of computer 
network development

“Internet has become a victim of its success”

• Internet value is too high

• Metcalf's Empirical Law

Value for formal methods:

• Trial and error development

• Engineering practice is valued above 
theoretical research

19



Founding Fathers about
Formal Methods

• Formal methods have not yielded results 
commensurate with the effort to use them.
They are overblown, verbose, hard to use,
hard to understand.

Vint Cerf

• We reject: kings, presidents and voting.
We believe in: rough consensus and running code.

David Clark

20



Principles of computer 
network design

David Clark
The Design Philosophy of the DARPA Internet Protocols

SIGCOMM ’88. — ACM, 1988. — Pp. 106–114.

• Fault tolerance

• Variety of data transfer services

• Support for a wide range of networks

• Distributed resource management

• Profitability

• Extensibility

• Accounting for used network resources

21



Prediction of network 
behavior

22

Packet Processing Rules

Network behavior

Network Environment 
Information

Service protocols

Device settings

Rule Generation Algorithms



Network Protocol 
Verification

Investigated Properties :
• Deadlocks - waiting for conditions that will never 

be met
• Livelocks – execution of protocol instructions 

does not bring it closer to the goal
• Improper termination – the protocol finishes its

work without reaching the goal

The number of states is potentially infinite - the 
method of exhaustive search is not applicable!

23



Verification of static network 
configuration

Investigated Properties :
• Black Holes – silent packet dropping
• Fowrarding Loops – packet looping
• Reachability – will the packet reach the destination

point?
• Restrictions on the route length
• Flow isolation

You need an expressive specification language!
How to restore network behavior?

24



Network Security

Verification and synthesis of firewall 
configurations:

• Equivalence check

• Redundancy Check

• Synthesis of a configuration consisting of a 
minimum number of rules

25



Formal methods and SDN

• New network equipment control protocols 
provide access to up-to-date packet 
processing rules

• Centralization of the network made it possible 
to collect information about the network 
configuration at a single point and track its 
change

• Now you can adapt the developments from 
other software development fields

26



New networks - new 
challenges

27

Packet Processing Rules

Network behavior

Controller Service Modules

Controller applications

Application settings

Controller



Control Plane Verification

04.12.2022
Доп.главы Компьютерных сетей к.ф.-м.н. 

Чемерицкий Е.В.
28



SDN Programming

29

Controller

APP4 APP2
APP1

APP3

Switches

Switch API

Platform

Controller API

Applications



Built-in interpreter

SDN Programming

30

Controller

APP4 APP2 APP1APP3

Switches

Switch API

Platform

Controller API

Applications



SDN Programming

from pyretic.lib.corelib import *

# send packets to the all ports

def main():

return flood()

# block the host with IP 10.0.0.1

def access_control():

return ~(match(srcip=’10.0.0.1’) |

match(dstip=’10.0.0.1’))

31



Control Plane Verification

Marco Canini, Daniele Venzano et. all

A NICE way to test OpenFlow applications 

A controller program execution model taking into 
account the state of the entire SDN

Thomas Ball, Nikolaj Biorner et all.

VeriCon: Towards Verifying Controller

Programs in Software-Defined Networks

Verifies the program for all network models

32



Data Plane Verification

• Less assumptions about control applications 
on the controller

• Checks the execution of policies at the level of 
rule checking - the method is insensitive to 
induced errors inside the controller

• A natural interpretation of the routing policy 
concept

33



Applying Vermont tool to
dataplane verification

E.P. Stepanov



• External flows do not reach the mail server
• Outbound flows pass through DPI
• There is a route between each pair of hosts in the 

office
• Different department networks are isolated
• All routes within the network are shorter than six hop
• Packets do not form routing loops
• Host A cannot connect to host B until host B tries to 

connect to host A
• The connection throughput is not less than R, and the 

data transfer delay does not exceed T

Requirements for computer network behavior

Routing policies



VERMÓNT
VERifying MONiTor

VERMONT checks packet processing rules in switch tables for 
compliance with formal routing policy specifications

Express network behavior requirements using our 
specification language

Provide topology and configuration files for switch devices

One-time job

Automation is possible

• Guarantee that network operates according our

expectations
• Identify erroneous network configurations
• Information on the reasons for the policy violation

N
e

ce
ss

ar
y

B
e

n
ef

it



Analysis of routing 
relationship properties

Packet state:

Switch1. Switch name {0, 1}m

Port2. Port number {0, 1}l

Header3. Packet header {0, 1}k

A

B

State 1:
Header h1
Port #1
Switch #1

State 2:
Header h2
Port #1
Switch #2

State 3:
Header h3
Port #1
Switch #3

State 4:
Header h4
Port #2
Switch #3

h1

h2 h3

h4



Relational network model

Switch Port Header Switch Port Header

One-step routing relation
(separate swithces, switch networks)

Port Header Port Header

Switching relation on the node
(separate rules and switching tables)

Switch Port Switch Port

Transmission relation
(links, network topology)

Switch Port

Input/output ports
(links, network topology)

A network is defined by a set of relationships



OpenFlow rule is modeled by Pattern and the
set of Rewrite patterns

0 0 0 1 0 1 1 * 0 0 0 1 * * * * 0 0 0 1

P[0] H[0] H[1] H[2] H[3]

Pattern

0 0 0 1 1 1 0 * 0 0 0 1 * * * * 0 0 0 1Rewrite

39

* - the packet falls under the Pattern,
independent of bit value

* - Rewrite pattern does not change bit value

A network is defined by a set of relationships

Relational network model

x1 x2 x3 x4

y1 y2 y3 y4



Binary Decision Diagram 
(ROBDD)

0 1 1 *

1 1 0 *

𝑥1 𝑥2 𝑥3 𝑥4

𝑦1 𝑦2 𝑦3 𝑦4

𝑥1𝑦1 𝑥2𝑦2
(𝑥3𝑦3)(𝑥4𝑦4 ∨ 𝑥4𝑦4)

𝑥1

𝑥2

𝑥3

𝑥4

𝑦1

𝑦2

𝑦3

𝑦4

1

𝑦1

𝑦2

𝑦3

𝑦4

0

𝑥1

𝑦1

𝑥2

𝑦2

𝑥3

𝑦3

𝑥4

𝑦4

1

𝑦4

0

The size of the BDD depends on the 
choice of variable order



BBD generation by a network
state

41

• Generate BDD for each pair 〈𝑃𝑎𝑡𝑡𝑒𝑟𝑛, 𝑅𝑒𝑤𝑟𝑖𝑡𝑒〉

• Generate BDD for each rule of FlowTable

• Generate BDD for each switch

• Generate BDD for all switches 𝑆

• Generate BDD for the topology 𝑇

• Generate the composition of 𝑆 and 𝑇

• Generate the relation 𝑅

• Generate a transitive closure 𝑅∗



Specification language

Input 𝐼𝑛(𝑥)

Output 𝑂𝑢𝑡(𝑥)

Switching step 𝑅(𝑥, 𝑦)

Reachability relation 𝑅+(𝑥, 𝑦)

x[field] = const x[field] = y[field]

𝝋 ∧ 𝝋 𝝋 ∨ 𝝋 ¬𝝋

∀𝒙.𝝋 ∃𝒙.𝝋

𝝍+ 𝝍[𝒊,𝒋]

Relations that
determine the

network behavior

Equalities

Bundles

Quantifiers

Closures

𝜓1 𝑥, 𝑦 = 𝜓(𝑥, 𝑦)
𝜓𝑛 𝑥, 𝑦 = ∃𝑧: 𝜓𝑛−1 𝑥, 𝑧 ∧ 𝜓 𝑧, 𝑦
𝜓[i,j] 𝑥, 𝑦 = 𝜓𝑖 𝑥, 𝑦 ∨ ⋯∨ 𝜓𝑗 𝑥, 𝑦

𝜓+(𝑥, 𝑦) = 𝜓 1,∞ (𝑥, 𝑦)

Rules to calculate
the closure



Example: banning loops by 
packet state

aux: lead_to_cycle(x) :=

In(x) and Exist[y:

R_tc(x,y) and

Exist[z:

R_tc(y,z) and

y == z

]

];

main: no_state_cycles() :=

Forall[x: not lead_to_cycle(x)];

x y

z



Network configuration 
verification method

The network satisfies the routing policy <=> the 
specification formulas of this policy are fulfilled for relations 

modeling the give network

Specification
parser

Relation
generation

Verifier

Policy A is
correct

Abstract syntax 

tree

Model relations

in BDD form

Policy B is violated by flow
set P

Topology and
switch states

Routing policy
specifications



90 Mb of configuration 
files

Fat Tree Topology

16 routers

757,000 rules

48 tables

Stanford University Backbone Network

Model generation time, seconds
Properties
𝑹𝒔𝒕𝒆𝒑
+

SDN verification time,
seconds

O T To
ta

lg
e

n
e

ra
ti

o
n

ti
m

e

Th
e

n
u

m
b

er
o

f
O

B
D

D
ve

rt
ic

e
s,

 t
h

o
u

s.
p

cs
.

Th
e

 o
rd

e
r 

o
f 

th
e

 O
B

D
D

 
p

at
h

n
u

m
b

e
r

St
at

e
cy

cl
e

s

To
p

o
lo

gy
cy

cl
e

P
at

h
s 

lo
n

ge
r 

th
an

 o
n

e
 

h
o

p

P
at

h
s 

lo
n

ge
r 

th
an

 t
w

o
h

o
p

s

P
at

h
s 

lo
n

ge
r 

th
an

 t
h

re
e

h
o

p
s

1.094 6.294 18.028 642 18 0.043 0.047 0.855 2.013 3.764



Requirement
check

Verdict
Time spent 

(ms)

Model generation - 3043.687

Transmission cycle YES 166.191

Black holes NO 174.845

Route length
<= 3 hops

NO 293.522

Route length
<= 4 hops

YES 736.015

Rule insert
seq. /in parallel

- 100 / 0.3*

Rule remove
seq. / in parallel

- 70 / 1*

Stanford network verification



Controller’s
commands

Deployment Scheme

Switch network

SDN controller

Proxy

Feeder

Verifier

Specifications

Switch
messages

Controller’s
commands

Switch
messages

Is the command safe?

Verifier’s verdict:
Policy is violated –
block the command
Policies completed –
apply command

Initial state

VERMONT models changes to switch tables after applying a 
controller command, and blocks the command if it leads to a 

violation of routing policies



Comparison with other tools

Tool
Model

generation
(ms)

Model
regeneration

(ms)

The language
power

OpenFlow
support

VERMONT 
2013

3100 100 - 600 FO[TC] Full

NetPlumber
Stanford University

2013

37000 2  - 1000 CTL Partial

VeriFlow
University of Illinois

2013

>4000 68  - 100 Fixed property 
set

Minimal

AP Verifier 
University of Texas

2013

1000 0.1 Fixed property 
set

Minimal

Anteater 
University of Illinois

2011

400000 ??? Fixed property 
set

None

FlowChecker
University of North 
Carolina

2010

1200000 350  - 67000 CTL Full



VERMONT demonstration

h1

h2
h3

h4

s1

Network disjoint

The switch serves up to two subscribers 
simultaneously

Port  #01
Port  #04

Port  #03
Port  #02



Policy specification

main: disjoint() := Forall[x, out_x, y, out_y:

!R(x, out_x) or !R(y, out_y) or
x[p] == out_y[p] and out_x[p] == y[p] or
x[p] == y[p] and out_x[p] == out_y[p]

];

x

out_x
out_y

y



main: disjoint() := Forall[x, out_x, y, out_y:

!R(x, out_x) or !R(y, out_y) or
x[p] == out_y[p] and out_x[p] == y[p] or
x[p] == y[p] and out_x[p] == out_y[p]

];

x

out_x
out_y

y

Policy specification



V
ER

M
O

N
T

p
ro

xy
 C

LI
R

u
le

s 
at

 
sw

it
ch

 S
1

M
IN

IN
ET

 
si

m
u

la
to

r 
C

LI

Switch S1 is already connected to 
VERMONT proxy

Flow table of switch S1
is currently empty

There are more components 
whose output is not shown:
• SDN controller
• VERMONT Verifier
• VERMONT Feeder



V
ER

M
O

N
T

p
ro

xy
 C

LI
R

u
le

s 
at

 
sw

it
ch

 S
1

M
IN

IN
ET

 
si

m
u

la
to

r 
C

LI

Setting VERMONT proxy to 
interrupt mode



V
ER

M
O

N
T

p
ro

xy
 C

LI
R

u
le

s 
at

 
sw

it
ch

 S
1

M
IN

IN
ET

 
si

m
u

la
to

r 
C

LI

Host h1 starts to ping host h3

Controller tries to install the rules 
to transmit ping packets

Proxy interrupts command
from the controller and sends 

them to Verifier

Verifier create an updated model 
of the data plane and checks 

them against a set of PFPs



V
ER

M
O

N
T

p
ro

xy
 C

LI
R

u
le

s 
at

 
sw

it
ch

 S
1

M
IN

IN
ET

 
si

m
u

la
to

r 
C

LI

Switch table contains rules to 
transmit packets between

host h1 and host h3

First packet of the flow
uses slow path

Proxy delivers verified
commands to the switch



V
ER

M
O

N
T

p
ro

xy
 C

LI
R

u
le

s 
at

 
sw

it
ch

 S
1

M
IN

IN
ET

 
si

m
u

la
to

r 
C

LI
Subsidiary packets use fast path

Rules have an idle timeout and 
will expire in 5 seconds



V
ER

M
O

N
T

p
ro

xy
 C

LI
R

u
le

s 
at

 
sw

it
ch

 S
1

M
IN

IN
ET

 
si

m
u

la
to

r 
C

LI

Host h2 starts to ping host h4

Controller tries to install the rules 
to transmit ping packets

Proxy interrupts command
from the controller and sends 

them to Verifier

Verifier create an updated model 
of the data plane and checks 

them against a set of PFPs



V
ER

M
O

N
T

p
ro

xy
 C

LI
R

u
le

s 
at

 
sw

it
ch

 S
1

M
IN

IN
ET

 
si

m
u

la
to

r 
C

LI

Proxy drops unsafe commands 
and notifies the controller



V
ER

M
O

N
T

p
ro

xy
 C

LI
R

u
le

s 
at

 
sw

it
ch

 S
1

M
IN

IN
ET

 
si

m
u

la
to

r 
C

LI

Why does ping work?

Packets are delivered through
the control plane

We can block them!
But do we really want to?



V
ER

M
O

N
T

p
ro

xy
 C

LI
R

u
le

s 
at

 
sw

it
ch

 S
1

M
IN

IN
ET

 
si

m
u

la
to

r 
C

LI

Old rules have been expired

Packets start to use fast path

Controller is allowed to
install new rules

Switch table contains rules to 
transmit packets between

host h2 and host h4



V
ER

M
O

N
T

p
ro

xy
 C

LI
R

u
le

s 
at

 
sw

it
ch

 S
1

M
IN

IN
ET

 
si

m
u

la
to

r 
C

LI

Rules to transmit packets from 
host h1 to host h3 violate 

forwarding policy

Packets use slow path



V
ER

M
O

N
T

p
ro

xy
 C

LI
R

u
le

s 
at

 
sw

it
ch

 S
1

M
IN

IN
ET

 
si

m
u

la
to

r 
C

LI

Switch table contains rules to 
transmit packets between

host h1 and host h3

Packets start to use fast path



Network configuration consistent 
update

E.P. Stepanov



Configuration consistent 
update problem

• Network configuration 𝐶 defines binding of 
rules to switches and network topology

• Relations 𝐼𝑁𝐶 and 𝑅𝐶 for configuration 𝐶
determine the 𝒑𝒂𝒕𝒉 of packet transmission

𝑠0 ∈ 𝐼𝑁𝐶

𝑠𝑖 , 𝑠𝑖+1 ∈ 𝑅𝐶
𝑝𝑎𝑡ℎ = 𝑠0, 𝑠1, … , 𝑠𝑖 , 𝑠𝑖+1, …

• 𝑃𝑎𝑡ℎ 𝐶 − the set of all packet
transmission paths for configuration 𝐶

64



Configuration consistent 
update problem

• 𝑐𝑜𝑚 – network reconfiguration command

add, delete or modify a routing rule

• 𝑐𝑜𝑚 𝐶 - configuration, obtained by applying
the 𝒄𝒐𝒎 command to the configuration 𝐶

• If 𝛼 = 𝑐𝑜𝑚1, … , 𝑐𝑜𝑚𝑘, then
𝛼(𝐶) = 𝑐𝑜𝑚𝑘(… , 𝑐𝑜𝑚1 𝐶 … )

65



• The partial order ≺ is introduced on the set of
reconfiguration commands 𝐶𝑜𝑚 : 

if 𝑐𝑜𝑚′ ≺ 𝑐𝑜𝑚′′, then 𝑐𝑜𝑚′′ is applying only after
𝑐𝑜𝑚′is finished to apply

• Reconfiguration package - a set of
reconfiguration commands, supplemented by a
partial order relation (𝐶𝑜𝑚,≺).

Configuration consistent 
update problem



Input:

• Initial network configuration C0

• Correctness and safety requirements

post-condition,   invariant .

Output:

• Find such a reconfiguration package 𝑈,≺ , that for
each any linearization of which 𝛼𝑈 it is satisfied:

1. 𝛼𝑈 𝐶0 ⊨ Φ

2. ∀𝛼′ 𝛼𝑈 = 𝛼′𝛼′′ ⇒ 𝛼′ 𝐶0 ⊨ Ψ

Configuration consistent 
update problem



Generate such configuration 𝐶, that satisfies the
given post-condition Φ

A. Noyes, T. Warszawski, P. Cernyand, N. Foster. 
Toward Synthesis of Network Updates. 
2-nd Workshop on Synthesis (CAV-2013), 2013, 
Saint Petersburg, Russia 

1. Synthesis of a given 
network configuration



• Post-condition Φ(X): 𝑋 = 𝐶

• Invariant Ψ(X) : ∀ 𝑠: 𝐼𝑁 𝑠 →

ቀ

ቁ

𝑃𝑎𝑡ℎ 𝑋, 𝑠 ⊆ 𝑃𝑎𝑡ℎ 𝐶 ∨ ൫

൯

𝑃𝑎𝑡ℎ 𝑋, 𝑠 ⊆

𝑃𝑎𝑡ℎ 𝐶0
𝑃𝑎𝑡ℎ(𝑋, 𝑠) – the packet (with state s) transmission path, that matches

configuration X

For any intermediate configuration that occurs when translating
𝐶0 to 𝐶, packets arriving at the network are processed either 

according to the rules 𝐶0 or according to the rules 𝐶

2. Global consistent network 
update

M. Reitblatt, N. Foster, J. Rexford, D. Walker. Consistent updates for software-
defined networks: change you can believe in! HotNets, v. 7, 2011.



• Post-condition Φ(X):
𝑃𝑎𝑡ℎ 𝑋 = 𝑃𝑎𝑡ℎ 𝐶0 ∖ {𝑝𝑎𝑡ℎ0} ∪ {𝑝𝑎𝑡ℎ1}

• Invariant Ψ(X) :
𝑃𝑎𝑡ℎ 𝐶0 ∖ 𝑝𝑎𝑡ℎ0 ⊆ 𝑃𝑎𝑡ℎ 𝑋 ⊆ 𝑃𝑎𝑡ℎ 𝐶0 ∪ 𝑝𝑎𝑡ℎ1

S. Raza, Y. Zhu, C.-N. Chu S. Raza, Y. Zhu, C.-N. Chuah. 
Graceful network state migrations.
IEEE/ACM Transactions on Networking, 2011.

3. Local consistent network 
update



• Post-condition Φ(X):
𝑋 = 𝐶

• Invariant Ψ(X) :
𝑃𝑎𝑡ℎ 𝐶0 ∩ 𝑃𝑎𝑡ℎ 𝐶 ⊆ 𝑃𝑎𝑡ℎ 𝑋 ∧

𝑃𝑎𝑡ℎ 𝑋 ⊆ 𝑃𝑎𝑡ℎ 𝐶0 ∪ 𝑃𝑎𝑡ℎ 𝐶

• Configuration 𝐶 was translated to the configuration
𝐶0 as a result of deleting part of the rules

• The goal is to restore 𝐶 from the configuration 𝐶0

4. Network recovery



• Post-condition Φ(X):
𝑃𝑎𝑡ℎ(𝑋) = 𝑃𝑎𝑡ℎ(𝐶) ∧

∀𝑌 𝑃𝑎𝑡ℎ 𝑋 = 𝑃𝑎𝑡ℎ 𝐶 → 𝑓 𝑋 ≤ 𝑓 𝑌

• Invariant Ψ(X) :
𝑃𝑎𝑡ℎ(𝑋) = 𝑃𝑎𝑡ℎ(𝐶)

• K. Kogan, S. Nikolenko, W. Culhane, P. Eugster, E. Ruan.  
Towards efficient implementation of packet classifiers. 
Proc. of the 2-d Workshop on Hot Topics in SDN, 2013.

5. Flow table optimization



h (h,1) (h,1) (h,1) h

Network Update Using Tags

𝐶0 sets the initial flow path
𝐶1 adds two intermediate nodes to it



h

h h(h,1) (h,1) (h,1)

(h,2)
(h,2)

(h,2) (h,2)

3-phase update algorithm

1: adding new rules

Network Update Using Tags



h

h h(h,1) (h,1)

(h,2)
(h,2)

(h,2) (h,2)(h,2)

3-phase update algorithm

1: adding new rules

2: switching route

Network Update Using Tags



h

h

(h,2)
(h,2)

(h,2) (h,2)(h,2)

3-phase update algorithm

1: adding new rules

2: switching routes

3: deleting obsolete rules

Network Update Using Tags



Network Update Using Tags

• Packet headers must have an additional field 
that will be used exclusively during 
configuration updates

• In special cases the update problem can be 
solved without the use of tagging, in the 
general case this problem is unsolvable

77


