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In the context of the emergent SDN paradigm, the attention is mostly directed to the evolution of control
protocols and networking functionalities. However, network professionals also need the right tools to reach
the same level –and beyond– of monitoring and control they have in traditional networks. Current SDN tools
are developed on an ad hoc basis, for specific SDN frameworks, while production environments demand
standard platforms and easy integration. This survey aims to foster the definition of the next generation
SDN management framework by providing the readers a thorough overview of existing SDN tools and main
research directions.

Additional KeyWords and Phrases: Software-DefinedNetworking, NetworkMaintenance, Debugging, Resource
Management, Simulation, Profiling, Monitoring

1 INTRODUCTION
Software-Defined Networking (SDN) has emerged strongly in the last decade, especially since the
publication of the first OpenFlow (OF) [100] protocol specifications. The key notion behind SDN is
to introduce a separation between the control plane and the data plane of a communication network.
The control plane is implemented via a logically centralized component called “the controller”.

However, similarly to the heterogeneity reminiscent of the early Internet [69], the current SDN
ecosystem is extremely fragmented due to the multitude of different controller platforms. There-
fore, although SDN introduces new possibilities for network management and configuration [86]
and it solves classical network management problems, it also creates new challenges [157]. For
example, the management plane is a large and underexplored area, particularly in high-availability
designs [56]. That is why addressing SDN management issues is imperative in order to avoid
patching SDN later [157].
To this purpose, we provide a comprehensive overview and analysis of the SDN tools that are

currently available as a concrete part of SDN management and control. The survey covers almost a
hundred of tools from different types. Most of them have been designed in the last five years, but
we aim to cover the topic from the beginning of the SDN paradigm until the present day.

1.1 SDN tools: An overview
Any piece of software that facilitates the development, deployment and/or maintenance of SDN
architecture and, more specifically, of network applications can be classified under the SDN tool
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category. They complete the puzzle of an ideal SDN management framework. When a tool is used
at development time, we consider it offline, whereas when applied at deployment or run-time,
we call it online. Offline tools are mainly verifiers or model checkers, but this category may also
include simulators; while online tools encompass: loggers, debuggers, profilers, memory managers
and emulators. Additionally, there are also parts of the SDN architecture that might be considered
tools, such as the communication protocols and channels, or the intrinsic mechanisms of the SDN
controllers that allow different SDN applications (or even frameworks) to work together without
conflicting with each other. More specifically, we envision the following classes of SDN tools:

• Composition: Composition of SDN applications and services let the network support up-
grades and expansions, including newer functionalities or coordinating several software
modules.
• Debugging: Troubleshooting, verification and model checking aim for the same objective:
the network behaves as expected. Their differences are related to the part of the network that
needs to be analyzed (data or control plane) and at which time (development, deployment or
run-time).
• Resource management: To guarantee an optimal utilization of network resources.
• Profiling: To prove that resource management is effective, we need profilers or monitors to
measure the network activity and resource consumption.
• Simulation: To repeat different scenarios without affecting the production network, simula-
tors and emulators represent an essential tool.

1.2 Related work
Although detailed surveys about SDN exist [60, 67, 73, 109, 161], they basically describe the big
picture of SDN, traversing the architecture layers up to down [136], focusing on security [31, 84, 123],
energy efficiency [144], scalability [70, 79, 110], traffic engineering [102], Northbound Interface (NBI)
and Southbound Interface (SBI) interfaces [99], wide-area networks [103], transport networks [7]
or compatibility issues, but leaving the Management-Control entity aside.
Some surveys mention the concept of debugging tools [89, 106], or focus on specific tools like

topology discovery [83], but providing just a few examples and without delving into much detail.
In contrast with them, this survey focuses on the state of the art of SDN tools in a generalized

manner, as part of the Management-Control entity.

1.3 Contributions and structure of this survey
This paper provides a comprehensive survey of the tools proposed in the literature for the manage-
ment and control of SDN. We classify and compare them, following different criteria. Finally, we
discuss and reach a conclusion about the current status of management tools in SDN.
We start with Section 2, where we describe the SDN architecture as defined by the Open

Networking Foundation (ONF), and give an overview on different approaches for interfacing SDN
tools and SDN platforms. Section 3 is devoted to composition, a service envisioned to allow multiple
SDN applications or frameworks to cooperate on controlling the same network infrastructure.
Section 4 addresses debugging tools, which encompass any diagnostic tool that aims to find network
malfunctions. Section 5 describes different approaches for the management of the memory of the
SDN-enabled devices, to optimize the usage of such a scarce resource. Section 6 introduces network
profilers, proposed to monitor the network resources. Section 7 compares different simulators and
emulators that can support the development and testing of SDN applications. Afterward, Section
8 discusses the analysis of all the previous sections and yields future research directions. Finally,
Section 9 concludes the paper.

2



Fig. 1. SDN architecture overview [113]

2 TOOLS IN THE SDN ARCHITECTURE
Currently, the ONF definition provided in [113] is the reference for most controller frameworks.
The architecture (Fig. 1) defines three planes –Data, Controller, and Application–, plus a Service
Consumer module which encompasses the Management and Control functions.
The physical Resources (pRs) are confined in the Data plane. Communication with the upper

plane is performed through the data-controller plane interface (D-CPI), also known as the SBI,
which exposes the capabilities of the pRs. SDN controllers are located in the Controller plane and
have a twofold objective: to control the Data plane resources and to orchestrate the requests of
the Application plane. Accordingly, the SDN controller virtualizes and orchestrates the virtual
Resources (vRs) onto its own underlying pRs. Services (such as topology monitoring, statistics
or API abstractions to control the Data plane) are offered as a vR from the Controller to the
Application plane via the application-controller plane interface (A-CPI), often called the NBI. SDN
applications are software modules that reside in the Application plane, and communicate their
desired network behavior to the Controller Plane via the A-CPI.
Finally,Management and Control are viewed as a continuum, i.e. as the same entity, which

can operate over all the three aforementioned planes. Its minimum functionality is to allocate
resources from a resource pool in the Data plane to a particular client in the Controller plane, and
to establish reachability information that permits the Data and Controller plane entities to mutually
communicate. Management-Control functions are provided by the Operations Support Systems
(OSS); which includes features such as: infrastructure maintenance (fault analysis, diagnostics,
alarm correlation and management), logging, configuration and service persistence, traffic analysis
or initialization parameters1. Some of these functions are in the scope of SDN and implemented by
means of what we call as SDN tools, presented in the following sections of this paper.
The Management-Control entity interacts with other planes through the use of interfaces.

As pointed out in [75], having open interfaces is crucial in the adoption of SDN. In this sense,
1In contrast with this schema, some approaches (e.g. NEOD [139] and PDEE [90]) embed part of the management functions
in the Data Plane, through firmware extensions for the network devices.
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many specifications have been proposed for communication between the Management-Control
entity and the Data plane, such as NETCONF [121], SNMP [76] or OF-Config [112]. However,
in case of the Controller plane, standard interfaces have not yet been defined to cope with the
requirements of maintenance and management operations. As a consequence, some of the available
SDN tools embed their functions inside the Controller plane. In other cases, the Controller plane
is enhanced with additional interfaces either defined from scratch, or built on top of existing
mechanisms, such as REpresentational State Transfer (REST) [41, 42], Advanced Message
Queuing Protocol (AMQP) [147] (including RabbitMQ [122] and ZeroMQ [166]).
Finally, the NBI provides access to network resources from the Application plane and its im-

plementation depends on the SDN platform. As this interface can be also used for management
purposes, we provide a quick overview of how to implement different SDN tools leveraging the
NBIs of the two most promising open source SDN frameworks at the time, i.e. Open Network
Operating System (ONOS) and OpenDaylight (ODL).

ONOS [17]: Monitoring and management of ONOS clusters can be performed either via Java
interface [116] or REST API [117]. Both interfaces allow to load and unload application bundles,
install and uninstall flow rules, obtain the topology, manage devices, etc. Higher level management
interfaces include a web GUI and the ONOS CLI [114], an extension of Karaf’s CLI built on top of
the ONOS Java interface.
Like the CLI, other tools such as debuggers, resource managers, and loggers, can make use of ONOS
interfaces to implement their functions. Especially the Java API allows the implementation of
modules for different layers of the ONOS architecture. For instance, debuggers may need to inspect
the NBI. In this case the Java API provides interfaces such as FlowRuleService, PacketService to get all
messages generated or received by the running applications. Similarly, resource managers can access
traffic or other statistics through the FlowRuleService or the DeviceService, moreover they can also
extend the distributed storage of ONOS to record such statistics with the StorageService. However,
in some cases even such rich APIs are not sufficient. For instance, a logger willing to inspect the SBIs
(e.g. getting OF or NETCONF messages) would need direct access of the Providers components, but
they do not implement the necessary interfaces. Another example is the composition mechanism
currently investigated and developed by authors of one of the ONOS feature proposals [115]. In
this case, they make use of existing ONOS interfaces, such as the FlowRuleService, to receive flow
rules from applications. However, they also need to extend the FlowRuleManager component in
order to add missing interfaces or to re-program the flow tables.

ODL [101]: Monitoring and management in ODL can be performed via RESTful API or via Java
APIs generated from Yang [18] models. Such APIs are exposed by the Service Adaptation Layer (SAL)
to allow developers to implement network applications and plugins (consumers) and connects the
consumers to appropriate modules providing services (data providers). Some of the most relevant
APIs (in the context of network management) that the ODL core projects expose are: Topology
to access the network graph containing edges, nodes and their properties, Flow Programmer to
configure flow entries on the network elements, Statistics to retrieve statistics of flow entries and
network elements, and Switch Manager which exposes the elements of the underlying network,
listing their ports and properties.
Accordingly, ODL imposes no limitation to implement interfaces with various SDN tools as far
as the model is designed. However, this freedom causes the creation of different custom APIs in
the end. Consensus in this regard would help building some APIs as the foundations that could be
reused afterward by any SDN tool for ODL.
In the next chapters, we analyze state-of-the-art SDN tools paying special attention to the

interfaces they implement. The focus of this survey is to obtain a conclusion regarding the maturity
of the Management-Control entity based on that analysis.
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3 COMPOSITION OF NETWORK APPLICATIONS
One of the emerging problems in SDN is the heterogeneity regarding network applications, which
include SDN applications and services. The idea behind the composition of network applications is
to run multiple SDN applications in parallel on the same network, independently of their origin.
Composition also involves conflict detection and resolution. The result is a global network policy.

Traditionally, network policy management is done manually (network administrators translate
high level network policies into low level network configuration commands) and policy changes
take a long time to plan and implement. Therefore, problems are typically detected only at run-time
when users unexpectedly lose connectivity, security holes are exploited, or applications experience
performance degradation [120].

Thus, the objective of composition of network applications is twofold: (i) to allow the coexistence
and cooperation among very heterogeneous control programs and (ii) to plan ahead possible
conflicts and errors so that they can be detected and solved automatically. To achieve this final
objective we envision the three following steps:

(1) Network partitioning and slicing: Network administrators should be capable of assigning
different slices of the network to the different applications they want to deploy in the network.
To achieve this goal, many SDN network hypervisors have already been implemented [19]
and we describe the ones related to composition in the following paragraphs.

(2) Prioritization/Ordering among network applications: A second step is the actual as-
sembling of the outputs from applications that need to be deployed in the same slice of the
network. This requires the definition of criteria and languages, e.g. to define which application
has a higher priority. Many current SDN controller frameworks, such as Floodlight [43],
ODL [101] and ONOS [17], already provide the capability of defining static priorities for SDN
apps to be deployed; however some issues like dynamically changing the priorities, creating
more complex behavior (not based only on those priorities) or allowing compatibility of
different SDN applications from different frameworks still remain unresolved.

(3) Conflict detection and resolution: The third and final step involves detecting and resolv-
ing conflicts at run-time. We understand as conflicts the uncertainty of having to merge
incompatible policies that resulted from the execution of different SDN applications for
the same input, e.g. a drop and a flood action. Conflict resolution can be understood as
an enhancement of assembling SDN applications that provides different mechanisms or
alternatives to be applied when merging, instead of a single default one.

3.1 Network Partitioning and Slicing approaches
In the SDN domain, FlowVisor [133] can be considered as the first approach to allow multiple
network controllers to run side-by-side on top of the same network infrastructure. Instead of
allowing all controllers to share the same traffic, FlowVisor partitions the network into smaller
slices and gives each controller only the view of its own slice of the network. To achieve this goal,
it sits as a centralized module between the network and the SDN controllers. FlowVisor was the
first network virtualization hypervisor for SDN, introducing the concept of slicing the networks;
many other hypervisors are built based on it and are documented in a comprehensive survey on
SDN hypervisors [19]. A followup to FlowVisor is OpenVirteX [4], which introduces the concept
of virtual topologies. These two approaches do not cover the scenario where network controllers
cooperate to control the same the traffic, therefore they do not implement any assembling or conflict
resolution mechanisms.
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3.2 Composition approaches
The most relevant works on composition of network applications are based on two basic operators.
One is the parallel operator, where new flow events (e.g. PACKET_IN for OF) are relayed to all
applications in parallel by the composition component and the resulting actions are then assembled
and applied to the network. The second is the sequential operator, where events are sent to
applications one after another in a previously defined chain. The resulting actions from one
application are merged with the event and then sent to the next controller. Almost all approaches
for composition allow arbitrary combinations of these two basic operators. The parallel operator for
composition of SDN applications was originally introduced by Frenetic [47], a high-level language
for OF networks. Similar to Frenetic, NetKAT [8] is a network programming language based
on the so-called Kleene algebra that defines union and sequential operators plus the Kleene star
operator to iterate applications. Grounded on Frenetic, Pyretic [105] is a domain-specific language
embedded in Python that aims at enabling network programmers to develop SDN applications by
leveraging on high-level abstractions. Pyretic enhances Frenetic by introducing (i) the sequential
composition, that allows one application’s module to operate on the packets already processed
by another module and (ii) the concept of topology abstraction, that allows the programmers to
limit each module’s sphere of influence. Pyretic applications can be executed on top of a modified
version of POX [53]. As the Pyretic’s interpreter communicates with POX through a socket-based
API, it can potentially run on top of any controller platform.

Redactor [151] bases its architecture on the declarative programming language Prolog, used to
write the SDN modules. Redactor uses a heuristic approach to resolve conflicts. These modules can
be integrated with the Prolog engine in existing controllers afterward.
Based on OpenVirtex, CoVisor [77] acts as a hypervisor and is placed between the network

and multiple controllers. CoVisor speaks OF on both SBI (with the network) and NBI (with the
guest controllers). The main goal of CoVisor is to allow applications written for different controller
platforms and in different programming languages to cooperate on controlling the same network
traffic. In order to achieve this goal, CoVisor defines operators to combine policies of applications
running on multiple controllers to produce a single flow table for each physical switch. Moreover,
CoVisor exposes a virtual view of the topology to each controller and to the applications running
on top of it. These topologies can be very simple, like a one switch topology for a firewall, can
provide a “big virtual switch” abstraction, or can mirror the real network for routing applications.
In summary, CoVisor assembles the policies of individual applications, written for a virtual network,
into a composed policy for the virtual network. Then, it compiles the “virtual” policies into a single
one for the physical network. Even though CoVisor came out when OF 1.3 was well established, it
only supports OF version 1.0.

NetIDE [129] provides a run-time Network Engine that allows the composition of multiple
network applications from different controllers. The semantics are similar to the ones defined in
CoVisor, but NetIDE differs from it in the following aspects: (i) the connection to the network
is performed via an SDN platform (e.g. ODL or ONOS) instead of leveraging OpenVirtex, (ii) it
supportsOF 1.0 and 1.3, and potentially other protocols such as NETCONF, and (iii) apart from
assembling applications, it handles and resolves possible conflicts between them.
Another SDN hypervisor is FlowBricks [33]. It is a framework that integrates heterogeneous

controllers using only the standardized controller to switch communication protocol. While CoVisor
only works with OF 1.0, FlowBricks is designed to support up to OF 1.4 and currently supports all
OF 1.1 datapath features, so FlowBricks can work with multiple flow tables, for instance. Similarly
to CoVisor, a policy definition configured on FlowBricks specifies how services from controllers
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Table 1. Comparison table of the different composition approaches

Approaches
Properties Description Type (Levels of composition) Applications InterfaceSlicing Ordering Conflict are modified

FlowVisor Composition defined by users ✓ No OpenFlow 1.0
OpenVirteX Composition defined by users ✓ No OpenFlow 1.0
CoVisor Composition defined by users ✓ No OpenFlow 1.0
NetIDE Composition defined by users ✓ ✓ No OpenFlow 1.0+, NETCONF, etc.

FlowBricks Composition defined by users ✓ Yes OpenFlow (modified)
NetKAT Union of all statements ✓* ✓ † - Programming language
Frenetic Union of all statements ✓ † - Programming language
Pyretic Union of all statements ✓ † - Programming language, Custom API
Redactor Heuristic composition ✓ ✓ - Programming language, Custom API
Statesman Automatic, with invariant checks ✓ ✓ - Custom API
Corybantic Modules scores proposals ✓ ✓ - Custom API
Athens Modules scores proposals ✓ ✓ - Custom API
PGA Automatic ✓ ✓ ✓ - Custom policy language

−: Means not applicable.
∗: NetKAT supports slices in its programming language, but not multiple apps running at the same time.
†: The semantic of these programming languages specifies how the operators that assemble policies are resolved, so a conflict in the sense of the other approaches is not possible.
A compiler can issue warnings when one policy is ignored in a union.

are applied to traffic on the datapath. FlowBricks runs on an emulated environment with heavy
hacks on the OF switches and cannot be used over standard network hardware.

Corybantic [104] supports composition of network applications by resolving conflicts over
specific OF rules. Corybantic acts as a module orchestrator, where modules are applications that
implement particular network functions and their impact to the network is evaluated in terms
of cost and benefits. The Corybantic Coordinator implements an iterative approach to evaluate
the admission on execution of a particular module. Each round of the iteration is divided in four
phases: (i) modules propose changes in the network, (ii) each module evaluates its own proposals
in term of cost and benefits, (iii) the Coordinator picks the best proposal, and (iv) the modules
install the chosen proposal onto the network. Its main disadvantage is that it does not allow the
use of different languages and controller platforms, as CoVisor does, and it requires the specific
implementation of the modules to be coordinated.

Like Corybantic, Statesman [140] composes network applications by resolving conflicts. States-
man defines three views of the network: observed state, proposed state and target state. To prevent
conflicts, applications cannot change the state of the network directly. Instead, each application
suggests a state to Stateman, in charge of merging (or rejecting) the individual proposals from
applications.

The goal of Athens [11] is to ease the coordination and the automatic management of resource
conflicts between SDN and cloud controller applications. It proposes a revision of the Corybantic
design, but it is essentially a compromise between Corybantic and Statesman, presented above.
Basically, Athens sends the current state of the network to each application module. As a reply,
all modules synchronously send to the Athens coordinator a set of proposed changes. After that,
Athens asks each module to evaluate all proposals (by using the same evaluation method proposed
by Corybantic). Based on the evaluation feedback, Athens runs its conflict resolution algorithm to
elect the winning proposal, which is eventually implemented onto the network.

PolicyGraphAbstraction (PGA) [120] leverages graph–based and “one big switch” abstraction
to detect and resolve policy conflicts. The Graph Composer entity generates a conflict-free graph
from the input policies, previously provided as graphs. This entity also prompts warnings and
errors, suggesting possible fixes. An initial prototype of PGA leverages VeriFlow [85] to verify
whether the policies in the composed graph are correctly realized on the network.

3.3 Summary of the different composition approaches
Table 1 summarizes and compares the composition approaches, based on:
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• Description:How the composition is specified. This ranges from fully automatic composition
to user-defined composition logic.
• Type (Levels of composition):
– Slicing: Network hypervisors, such as FlowVisor, OpenVirtex, force each application
module to operate on a disjoint subset, or slice, of the traffic.

– Ordering:Multiple application modules can cooperate on processing the same traffic by
ordering their actions.

– Conflict: It indicates whether the approach considers tackling the detection and resolution
of conflicts between individual policies generated by different application modules.

• Applications are modified: It indicates whether preexisting application modules written
for the OF (or other standards) must be modified in order to meet the requirements of the
composition framework/approach. This categorization is not applicable to approaches that
introduce new programming languages, as existing applications cannot be reused unless they
are totally rewritten with the new language.
• Interface: APIs used by the framework to implement composition and conflict resolution
mechanisms.

3.4 Concluding remarks
Composition of network policies can be executed at different levels of the SDN architecture.
Approaches that focus on the Application plane, such as Pyretic, Frenetic and others, introduce
new programming languages to support the implementation of applications composed by several
modules that jointly manage the network traffic. In particular, the Pyretic interpreter translates the
high level instructions into low level messages for the underlying SDN controller.
Other mechanisms, such as FlowVisor, OpenVirteX, Covisor, NetIDE and FlowBricks, place a
hypervisor between the Data plane and the application modules. Except NetIDE, which aims at
supporting multiple control/management protocols, the others depend on a specific version of the
OpenFlow protocol, which limits their application space.

4 DEBUGGING TOOLS
When we convert network behavior into a software, the first concept that comes into our minds as
a tool is a debugger. As defined in [125], debugging or troubleshooting is the process of locating
and fixing or bypassing bugs (errors) in a computer program code, but also in the engineering of
a hardware device. By following this definition, we already foresee two types of SDN debuggers:
debuggers for the software or the SDN applications (control plane) and debuggers for the network
device or SDN switch (data plane). Another classification considers whether a debugger requires
the physical network to be deployed or running (online debuggers), or not (offline debuggers).

In the following sections, we analyze the different state-of-the-art SDN debuggers classified by
the targeted SDN plane. Finally, last section summarizes all of them in a table.

4.1 A brief introduction on model checking
In this section, we first briefly introduce the concept of model checking, as many of the tools
will refer to it. Model checking is an automatic verification technique for finite state concurrent
systems. It automatically provides complete proofs of correctness. A model checker systematically
explores all possible ways to execute a program (as opposed to testing, which only executes one
path depending on the input data). The process for model-checking a software consists basically
on three steps:
• Modeling: Converts the system into a formalism (e.g. a machine state diagram).
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• Specification: Determines the correctness properties to be validated by the Model Checker
tool (e.g. no loops in a SDN network or the existence of black holes2).
• Verification: Validates the correctness properties in the modeled system and offers the
outcomes obtained (whether or not the property is fulfilled in the system).

As all possible cases are taken into consideration and verified, the obtained results are “absolute”,
which means that if the property “no loops in the system” has been validated, the network will
never have a loop. However, the most pronounced disadvantage in this technique is the State Space
Explosion problem, which consists on having a huge state space where the validation of a property
is extremely complex and very costly computationally.

4.2 Control plane debugging
NICE [25] finds inconsistencies in an SDN application (for instance: black holes in the network
produced by an application running on top of an SDN controller). It creates a model from the
network topology and the network application. Then, it systematically explores the whole state
space of the model and checks the desired correctness properties against it. Eventually, NICE
outputs the property violations found along with the traces to deterministically reproduce them.
NICE addresses the State Space Explosion issue by means of the Symbolic Execution Engine. The
authors consider that the event handlers of the SDN application are the key to explore the whole
state space of the model. These handlers must be triggered in order to exercise the different paths
of the state space. The Symbolic Engine identifies the packets that trigger these events and feed the
network with them. NICE provides a library of correctness properties that can be extended by the
user. It was designed for the NOX SDN controller framework [57].

Kuai [97] verifies that an SDN satisfies a specific property. It aims to be reach a higher perfor-
mance than other SDN verificators by using a simplified version of an OpenFlow switch and using
Murphi as the controller language (which implies translating SDN applications previously to the
analysis). However, as a full model checker, it still needs to deal with the state-space explosion
problem.

VeriCon [12] verifies that an SDN application satisfies a set of network-wide invariants (desired
correctness properties to be validated) in all admissible topologies and for all possible (infinite)
sequences of network events. Unlike NICE [25], which creates a finite state model checking why
the tool is considered unsound (it can never prove the absence of errors in the infinite state SDN
application), VeriCon is able to guarantee the absence of errors in SDN applications or to compute
a concrete counterexample where a network-wide invariant is violated. It verifies that, for every
event executed in an arbitrary topology, the SDN application satisfies the required correctness
properties by means of a theorem prover that implements a classical Floyd-Hoare-Dijkstra deductive
verification approach.

Verificare [137] is a platform built to enable formal verification of SDN applications. Verificare
has three primary components: a modeling language (VML), a set of formal requirements, and
translators for verification tools such as SPIN [65] or PRISM [92]. Users need to translate the SDN
application, controller and network topology into the equivalent VML models, which are later on
composed and checked by Verificare, raising counter-examples if found.

Assertion language for debugging [14] is a language for verifying and debugging SDN ap-
plications. Like conventional programming languages, such as C or Python, which make use of
assertions to facilitate finding bugs before the final deployment, the proposed assertion language
supports debugging SDN applications by allowing programmers to annotate them with C-style
assertions. The main contributions of this work are: (i) an assertion-based language to debug

2A black hole is a place in the network where traffic is silently discarded, without informing the source or destination
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and verify dynamic properties of SDN applications and (ii) a verification process that leverages
VeriFlow [85]. This language has been implemented as a debugging library and API atop a modified
version of VeriFlow [85]. The evaluation has been performed in Mininet [93] using Pyretic and
POX.

Abstractions for Model Checking SDN Controllers [131] leverages abstraction techniques
to prove the correctness of controllers using model checking. Given a network topology, the
correctness of an SDN application is proven with an arbitrary number of packets. It addresses the
State Space Explosion problem by abstracting the data state and the network state. Such abstractions
are based on keeping only one packet (concrete packet) in the system and on injecting packets
with arbitrary header values (environment packets) in the network. The model size is significantly
reduced as a result. Correctness properties that they validate icnlude: no loops and no black holes
(both checked in very simple topologies). The main limitation of this approach is its poor scalability.

Toolkit for Automated Sdn TEsting (TASTE) [95] evaluates the feasibility of the test–driven
methodology, inspired by software engineering principles to improve design, configuration and
test of SDN. Specifically, the authors propose a methodology for checking the compliance of SDN
controllers with given data path requirements (e.g. a data path requirement could be that all
outgoing traffic from a private network must pass through a firewall). Another contribution of [95]
is the definition of a formal language called Data Path Requirement Language (DPRL) that allows
the reproducibility of network tests.
Authors of Kinetic [87] propose a domain specific language and an SDN control system that

allows operators to express dynamic network policies in an intuitive way. Kinetic is implemented as
a Pyretic [105] module and leverages its high-level abstractions to provide a structured language for
expressing network policies in terms of finite state machines (FSMs). Kinetic also uses the Pyretic’s
composition operators to create large FSMs by combining different smaller ones. The paper reports
two different evaluations of Kinetic: (i) a user study to determine the degree of usability of Kinetic
for network operators and (ii) a performance evaluation in terms of efficiency in compiling policies
into flow rules by varying the number of policies, the size of the network and the rate of events.
As a debugging tool, Kinetic also performs verification on the constructed FSM models, prior to
execution.

Finally, Automated Bug Removal for SDNs [159] proposes a method for detecting and fixing
bugs in SDN applications. It specifically focuses in generating automatic fixes for SDN following
the approach of data provenance [24] from databases, which tracks causality, but generalizing it to
SDN. The main drawback is that it requires a customized NBI for applications (i.e. a specific SDN
framework adapted to the approach).

4.3 Data plane debugging
SOFT [91] uses the same technique as NICE (symbolic execution). In contrast, SOFT finds inconsis-
tencies among the implementations of OF agents (software executed in OF switches). SOFT looks
for inconsistencies by comparing the behaviors of OF switches from different vendors that may
cause malfunctions in the network. It emulates an SDN controller (Test harness) capable of injecting
symbolic inputs in an OF switch and it looks for a set of inputs which provoke that an OF agent
behaves differently than others. Therefore, it exercises all possible paths in the software executed
in the OF switch. SOFT has been tested using two publicly available OF agents compatible with the
specification 1.0.

Similarly to SOFT, OFLOPS [124] is a software framework for OF switches evaluation. OFLOPS
simultaneously emulates an OF controller and the network traffic and lets the user perform different
tests to analyze the capabilities and the performance of OF-enabled software and hardware switches.
OFLOPS is open source and can be bundled with specialized hardware in the form of the NetFPGA
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board [153] to ensure sub-millisecond-level accuracy of the measurements. OFLOPS presents the
behavior and performance of five OF-enabled devices: three hardware switches from different
vendors, an Open vSwitch-based [51] software switch, as well as a NetFPGA-based switch.

OFTest [45] is a Python-based test framework maintained by the Project Floodlight community.
OFTest is meant for testing OF switch implementations and their compliance with the OF specifica-
tion. OFTest is connected to both the control plane and the data plane of the switch. It provides a
set of basic pre-configured tests which can be extended to cover more complicated test scenarios.

Similarly to OFTest, Ryu’s OpenFlow Switch Test Tool [127] also verifies the degree of com-
pliance of an OpenFlow switch with the OpenFlow specifications. It is integrated in the source
code of the Ryu SDN framework. The basic operation of this tool implies registering a flow or
meter entry, by generating a specific packet and actions, and processing the expected result. Test
scenarios are written in JSON, so that users can easily modify or add new ones.

FlowChecker [5] detects misconfigurations in OF switches. It enables network administra-
tors/users to: (i) identify inconsistencies across paths within the same or different domains, (ii)
validate the correctness of switches’ flow tables and (iii) debug reachability and security problems.
FlowChecker is written in C/C++ and uses the BuDDy library [28] to encode OF configurations
with Binary Decision Diagrams (BDDs) [3]. FlowChecker can be used integrated within OF ap-
plications (as a library) running on top of NOX, or as a stand-alone tool that runs FlowChecker
and communicates with one or multiple controllers by using a dedicated protocol. In the latter
scenario, FlowChecker acts as an independent centralized server application, also called by authors
“Master Controller”, and receives queries from OF controllers in different domains sliced by the
FlowVisor [133] hypervisor.

VeriSDN [71] validates correctness properties (such as the absence of loops). Specifically,
VeriSDN is a framework for the formal verification of SDN scenarios based on the process al-
gebra called pACSR, which is an extended version of the packet-based Algebra of Communicating
Shared Resources (ACSR) [22], developed for formal verification of real-time embedded systems
and cyber-physical systems.

ATPG (Automatic Test Packet Generation) [164] proposes an automated and systematic approach
for testing and debugging networks online. ATPG is a framework that automatically generates
packets to: (i) test the liveliness of the underlying network (in terms of availability), (ii) verify the
consistency of the data plane with respect to configuration specifications and (iii) test performance
assertions, such as packet latency. ATPG detects errors by injecting test packets in the network so
that every packet processing rule in the data plane is exercised and every link is tested. Differently
from common techniques used by network operators, such as levaraging the ping command, ATPG
is scalable for large networks and tests all links. ATPG operations are grounded on the header space
network model [82] and on a packet selection algorithm that computes the minimal set of test
packets, so that every forwarding rule can be exercised and covered by at least one test packet.
Finally, a fault localization algorithm determines the failing rules or links.

Similarly to ATPG, BUZZ [39] is also a model-based framework to test the correctness of network
policy implementations. It is specifically focused on expressiveness and scalability, and it claims
to be five orders of magnitude faster than alternative designs. BUZZ has been implemented and
evaluated in ODL.

Monocle [119] follows the same principle that ATPG and checks inconsistencies in the data plane
with respect to the control plane. It enhances ATPG as it also works efficiently in highly dynamic
SDN networks, generating probe packets on a millisecond timescale and detecting misbehaving
rules in switches in seconds. It is implemented as a combination of C++ and Python proxies:
Multiplexer, responsible for forwarding PACKET_IN/_OUT messages, and Monitor, main proxy and
responsible for tracking the tables, generating the probes and updating the controller.
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Following the same approach, VeriDP [168] continuously monitors the control-data plane
consistency, using an abstraction of the control plane called path table, which is incrementally
updated, and packet tagging at the data plane.
Analogously to the ping command, sPing [143] diagnoses the data plane via packet injection,

discovering problems such as: network loops or black holes, and also discovering the link layer
information.

RuleScope [23] inspects SDN forwarding, generating probe packets and processing them after-
ward. While it can leverage packet tracing tools like NetSight (described below), it provides a series
of monitoring applications implementing specific algorithms for detecting and troubleshooting
rule faults. Experiments were performed with the Ryu SDN controller and the Pica8 P-3297 switch.

PathSeer [6] aims to trace packet trajectories in SDN-enabled data centers. PathSeer leverages
OpenFlow to rewrite packet headers so that they contain the ingress port number of the switches
traversed and, thus, the path followed. It claims to be much more scalable than other approaches,
as it does not require to install so many flow rules. Furthermore, probe packets can be injected at
any point of the network instead of depending on specific end points.

PathletTracer [167] debugs multiple L2 paths. It focuses on path tracing, an operation for SDN
troubleshooting that helps the network operators to improve network performance, to validate
if a path is available and to allocate resources optimally. To know which path is traversing the
packet, PathletTracer associates each given path with an identifier and it leverages unused bits in a
packet’s header to carry the identifier across the path. Once a packet arrives to the destination,
PathletTracer decodes the identifier to determine the path traversed.

SDN traceroute [2] is a packet-tracing tool for measuring paths in SDN networks. It leverages
the SDN capabilities to overcome the limitations of the well-known tool traceroute, which only
provides layer 3 path information as it relies on the time-to-live (TTL) field in the IP header. SDN
traceroute operates regardless of the network layer. It runs as an application on an SDN controller
so that it can install flow rules onto the SDN-enabled switches and listen to network events. Like
traceroute, SDN traceroute injects probe packets to measure network paths. Its algorithm imposes
two restrictions. First, SDN traceroute assumes that it can reserve some bits of the packet headers
exclusively for its use. These bits must not be used when taking forwarding decisions and must not
be modified by any device in the network. Second, SDN traceroute reserves the highest priority
value (32,768 in OF).

sTrace [152] is a packet-tracing tool for SDN, but specifically focused on large multi-domain
SDN networks. It considers other tools, such as SDN traceroute, do not scale well for big networks.
sTrace has been implemented for OpenFlow 1.0 and 1.3, and tested with Open vSwitch and Mininet.

SDN-RADAR [52] detects network issues by leveraging SDN to identify the most probable
under-performing links in the network based on service degradation metrics. It is designed as a
run-time application that injects test packets into the network to measure performance degradations
and to calculate the most likely links where faults occurred. It also requires specific agents running
at different locations in the network, which perform periodic measurements.

Netography [170] defines the concept of packet behavior to locate network issues and find out
their root causes. It troubleshoots the network by exporting packet behavior with probes, focusing
on forwarding errors and performance degradation (latency and packet loss).

4.4 Both (control and data) planes debugging
OFf [36] is a debugging and testing environment for SDN platforms built on top of fs-sdn [59], a
simulation environment for SDN. OFf debugs and tests SDN applications by providing common
features such as breakpoints or variable inspection. It allows trace replay, which reproduces network
activity captured, and report generation, which generates a report upon changes happening in the
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topology or in the flow tables. OFf is designed to work with any controller platform, including
POX, ODL and Ryu [128].

STS [130] presents a technique, retrospective causal inference, for automatically identifying a
minimal sequence of inputs that trigger a bug. It also detects equivalent events It has been applied
to five open source SDN control platforms, namely Floodlight, NOX, POX, Pyretic and ONOS.
Also, neither ndb [62] nor OFRewind (see below) address the problem of diagnostic information
overload: with millions of packets, picking the right subset to debug can be challenging, and STS
programmatically provides the information about what caused the network to enter an invalid
configuration in the first place.

FLOWGUARD [68] is a framework for OF-based networks for detecting and solving firewall
policy violations. The authors argue that monitoring PACKET_IN messages is not sufficient to
detect all firewall policy violations, since violations can also be induced by proactive installation of
flow rules, by changes of the network state or by some OF actions such as SET_FIELD. A prototype
of FLOWGUARD has been implemented for Floodlight and tested against the Floodlight built-in
firewall. Although FLOWGUARD increases the time to inspect the packets with respect to the
firewall, the performance overhead is considered acceptable.

NetPlumber [81] is a real-time policy checking tool based on Header Space Analysis (HSA) [82]
(described below), which shares some authors with ATPG (presented before). NetPlumber sits
between the control and data planes, and inspects the control channel (OF messages) to detect
network state changes, thus detecting invariant violations such as: loops, reachability problems and
black holes, and even checking user-defined policies. The NetPlumber’s policy checking mechanism
is built around the so-called plumbing graph which captures all the paths derived by the flow
installed on the network. The performance of the graph update process has been measured for
new flow and link up events on three real-world network: the Google inter-data center WAN, the
Stanford University’s backbone and Internet2 [72]. The results show that NetPlumber takes longer
to update the graph when a link is added. Although a link up/down is usually a rare event, the
authors state that NetPlumber is not suitable for networks with a high link up/down rate such as
energy-proportional data center networks [1].

VeriFlow [85] checks the network–wide correctness in real–time. It leverages SDN to obtain
the state of the network by sitting between the SDN controller and the physical network, checking
the validity of network invariants (loops, black holes, path availability, etc.) each time a new rule
is added, removed or modified. VeriFlow confines the verification activities to those parts of the
network whose actions may be influenced by the new update. Thus, it slices the network into the
so-called equivalence classes (EC) which are sets of packets that are subject to the same forwarding
actions throughout the network. The network state is checked only for those ECs that are affected
by the update. VeriFlow represents the network behavior with forwarding graphs, where nodes
are pairs (EC, device) and edges represent a forwarding decision for each (EC, device) pair. Finally,
invariants are specified as verification functions that take the forwarding graphs as input and that
are used to check potential violations of key network invariants. The evaluation demonstrates
that VeriFlow’s verification time is linear with the number of ECs involved in the network update.
Therefore, VeriFlow has difficulty in verifying invariants in real-time when a large number of ECs
is affected by the update (e.g. link failure). VeriFlow was implemented within the NOX controller
and recently founded its own company [141].

Libra [165] is a fast, scalable tool to detect loops, black-holes, and other reachability failures. It
takes as a starting point the modeling approach of NetPlumber, HSA and VeriFlow, by taking and
analyzing a snapshot of the forwarding tables, but it focuses on huge network (tens of thousands of
switches). They consider snapshots might be inconsistent in large networks with frequent changes
to routing state, and they also believe tools should accomplish the performance requirements
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of modern data center networks. For this reason, they simplify the analysis by assuming packet
forwarding based on longest prefix matching. Once a stable snapshot has been captured, Libra check
its correctness by dividing the task into smaller, parallel operations, computed with MapReduce [32].

Delta-net [66] also competes directly with NetPlumber or VeriFlow, automatically detecting
violations in the network, by following program analysis techniques. It is based on the observation
of similar forwarding behavior of packets through parts of the networks (while previous works
focus on the entire network) and, for this reason, it claims to be ten times faster. It has been
implemented and tested with the SDN-IP application in ONOS.

HSA (Header Space Analysis) [82] is a protocol-agnostic framework proposed to identify failures
such as reachability failures, forwarding loops, traffic isolation and others. It consists of a geometric
model where packets are points in a network space and the network boxes are functions that
transform points in the defined network space. Moreover, they show how such a formalism solves
the aforementioned network failures in a protocol-agnostic way. Although they prove how HSA
can be implemented online by testing it in the Stanford University’s backbone network, they
do not explicitly mention potential scalability issues. The techniques described above have been
implemented as a library called Header Space Library (Hassel).

SHSA (Stateful Header Space Analysis) [162] extends HSA to detect and solve invariant violations
with stateful middleboxes. After testing it in the Stanford University’s backbone network. Authors
claim to reach higher efficiency and scalability than HSA.

Authors of FlowTest [38] argue that existing testing and verification tools for SDNs often focus
only on ensuring that the network meets specific reachability requirements (e.g., no black holes, no
loops, etc.). However, such tools are not able to handle many data plane functions (DPF), such as
firewalls or load balancers, or complex policy requirements, such as the correct implementation of
service chaining policies. The objective of this work is to define the conceptual foundations for a
data plane testing framework able to tackle stateful and dynamic DPFs, and policy requirements.
FlowTest is designed with three main logical components:

1. Test traffic planner, which generates a test traffic plan, responsible of coordinating the traffic
injectors to generate traffic traces for testing desired properties.

2. Injectors, common hosts connected to the network that run traffic generators or trace injection
software, driven by the planner.

3. The monitoring and validating engines, to monitor and validate the status of the SDN controller
and the data plane.

The authors have implemented an initial prototype of the test traffic planner by using a tool based
on Artificial Intelligence (AI) and called GraphPlan [20].

OFRewind [160] provides network behavior record and replay. OFRewind sits between the
network and the SDN controller, intercepting and modifying the control messages. While OFRewind
takes care of recording and replaying control traffic, it delegates recording and replaying of data
traffic to the DataStore elements locally attached to the SDN switches. When replaying the control
traffic, it emulates an SDN controller toward the SDN switches or, vice-versa. To record data traffic,
OFRewind leverages on the control channel to instruct the SDN switches to mirror the traffic to
the DataStore elements. Vice-versa, the DataStore elements re-inject the recorded traffic into the
network during the replay process.

SDNRacer [37] levarages STS to implement a controller-agnostic debugger for production-grade
SDN controllers. It detects invariant violations, being able to describe the precise sequence of events
that caused them (i.e. the exact pairs of read/write events). Differently from approaches inspecting
the control plane, the speed of the analysis in SDNRacer only depends on the trace size, which is
more scalable. SDNRacer has been implemented for POX, Floodlight and ONOS.
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Table 2. Comparison table of the different debugging tools (1/2 - Control and Data planes)

Tools
Properties Description Type

(Targeted plane)

Features
InterfaceExecution

time Modeling Packet
history

Packet
injection

NICE Finding inconsistencies
in SDN applications Control Plane Offline ✓ OpenFlow 1.0

Kuai Finding inconsistencies
in SDN applications Control Plane Offline ✓ OpenFlow 1.0

VeriCon Finding inconsistencies
in SDN applications Control Plane Offline ✓ OpenFlow 1.4

Verificare Formal verification
of SDN applications Control Plane Offline ✓ Custom API

Assertion language
for debugging

Formal verification
of SDN applications Control Plane Offline ✓ Custom API

Abstractions for model
checking SDN contr.

Proving correctness
of SDN controllers Control Plane Offline ✓ Custom API

TASTE Compliance check
of SDN controllers Control Plane Offline ✓ Custom API

Kinetic Formal verification
of SDN applications Control Plane Online ✓ Custom API

Automated Bug
removal for SDN

Provides fixes for
SDN applications Control Plane Online ✓ Custom API

SOFT Finding inconsistencies
in OF agents Data Plane Offline OpenFlow 1.0

OFLOPS Analyzing capabilities
of OF switches Data Plane Offline OpenFlow 1.0

OFTest Compliance check
of OF switches Data Plane Offline ✓ OpenFlow 1.0, 1.1

Ryu’s Switch
Test Tool

Compliance check
of OF switches Data Plane Offline ✓ OpenFlow 1.0, 1.3, 1.4

FlowChecker Detects misconfigurations
in OF switches Data Plane Online ✓ OpenFlow 1.0, Custom API

VeriSDN Formal verification of SDNs Data Plane Online ✓ Custom API

ATPG Consistency of data plane with
control plane (via packet injection) Data Plane Online ✓ ✓ OpenFlow 1.0

BUZZ Consistency of data plane with
control plane (via packet injection) Data Plane Online ✓ ✓ OpenFlow 1.0+

Monocle Consistency of data plane with
control plane (via packet injection) Data Plane Online ✓ ✓ OpenFlow 1.0+

VeriDP Consistency of data plane with
control plane (via packet injection) Data Plane Online ✓ ✓ OpenFlow 1.0+

sPing Inspects SDN behavior
(via packet injection) Data Plane Online ✓ OpenFlow 1.0, 1.3

RuleScope Inspects SDN forwarding
(via packet injection) Data Plane Online ✓ OpenFlow 1.0+

PathSeer Inspects SDN forwarding
(via packet injection) Data Plane Online ✓ OpenFlow 1.0+

PathletTracer Inspects SDN forwarding
(without packet injection) Data Plane Online ✓ OpenFlow 1.0

SDN Traceroute Inspects SDN forwarding
(via packet injection) Data Plane Online ✓ ✓ OpenFlow 1.0+

sTrace Inspects SDN forwarding
(via packet injection) Data Plane Online ✓ ✓ OpenFlow 1.0, 1.3

SDN-RADAR Inspects SDN performance
(via packet injection) Data Plane Online ✓ ✓ Custom API

Netography Inspects SDN behavior
(via packet injection) Data Plane Online ✓ ✓ Custom API

NetSight [63] captures and builds packet histories and makes them available through an API. A
packet history is the route that a packet traverses plus the switch state and header modifications at
each hop. NetSight assembles packet histories into postcards, event records created whenever a
packet traverses a switch. Packet histories can be filtered via a regular-expression-like language,
Packet History Filter (PHF). Leveraging on the aforementioned API and PHF, the authors built four
applications on top of NetSight: ndb, netwatch, netshark and nproof, which are an interactive network
debugger, a live network invariant monitor, a network packet history logger and a hierarchical
network profiler, respectively. These tools are presented separately in the following paragraphs.
NetSight has been developed in C++ and tested with the following controller frameworks: NOX,
POX and RipL-POX [54]. Recently, some of the authors of NetSight, together with authors of other
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Table 3. Comparison table of the different debugging tools (2/2 - Both planes)

Tools
Properties Description Type

(Targeted plane)

Features
InterfaceExecution

time Modeling Packet
history

Packet
injection

OFf
Debugging and testing

of SDN controllers and switches
(trace replay and breakpoints)

Both Offline ✓ ✓ OpenFlow 1.0+

STS
Debugging and testing

of SDN controllers and switches
(provides right subset to debug)

Both Offline ✓ ✓ OpenFlow 1.0+

FLOWGUARD Detects and solves
firewall policy violations Both Online ✓ OpenFlow 1.0+

NetPlumber Detects and solves invariant
violations (loops, blackholes, etc.) Both Online ✓ OpenFlow 1.0+

VeriFlow Detects and solves invariant
violations (loops, blackholes, etc.) Both Online ✓ OpenFlow 1.0+

Libra Detects and solves invariant
violations (loops, blackholes, etc.) Both Online ✓ OpenFlow 1.0+

Delta-net Detects and solves invariant
violations (loops, blackholes, etc.) Both Online ✓ OpenFlow 1.0+

HSA Detects and solves invariant
violations (loops, blackholes, etc.) Both Online ✓ Custom API

SHSA Detects and solves invariant
violations (loops, blackholes, etc.) Both Online ✓ Custom API

FlowTest Checks correct implementation
of functions and policies Both Online ✓ Custom API

OFRewind Debugging and testing of SDNs
(replay of data and control traffic) Both Online ✓ ✓ OpenFlow 1.0

SDNRacer Debugging and testing of SDNs
(packet histories) Both Online ✓ OpenFlow 1.0+

NetSight Debugging and testing of SDNs
(packet histories) Both Online ✓ Custom API

debugging tools surveyed in this paper, founded Forward Networks [46], where the main product
is a platform for network assurance.

ndb [62] is an interactive network debugger which later evolved into the whole NetSight project.
ndb provides interactive debugging features for networks, analogous to those provided for software
programs by the GNU Project Debugger (GDB) [50]. ndb allows developers to detect and debug
wrong network behaviors leveraging on packet histories provided by the NetSight platform. ndb
is able to diagnose common bugs such as: reachability errors, race conditions, incorrect packet
modifications.

netwatch is a live network invariant monitor. netwatch allows the operator to specify a network
behavior in form of invariants and it triggers an alarm whenever a packet violates any invariant.
The current supported invariants are: isolation between different groups of hosts, loops, waypoint
routing to catch packets that do not go through a specific waypoint (e.g. a proxy) and max-path-
length to detect paths that exceed a certain length (e.g. the diameter of the network).

netshark is a Wireshark-like [158] application that allows users to filter the history of packets.
netshark accepts PHF specifications as input and returns the collected packet histories matching
the query. A dissector for Wireshark is provided to analyze the results.
Finally, nprof is a network profiler and, as such, it will be described in Section 6 devoted to

profilers.

4.5 Summary of the different debugging tools
Tables 3 and ?? summarize and compare the different debugging tools, based on:
• Description: Concise description of the tool.
• Type (Targeted plane): Whether analysis and verification focus on the data plane (SDN
switches), the control plane (SDN applications) or both (overall SDN behavior).
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• Features:
– Execution time: Two types of tools: offline, which fulfill their purpose when the network
is not being executed, and online, which accomplish their function while the SDN network
is running (either at deployment or at run-time).

– Modeling: This parameter indicates whether the tool creates a model for later verification
or not.

– Packet history: Tools that keep track of the information from the packets that traverse
the network. In some cases, by tracking the traffic crossing a certain point and in other
cases by recording information about nodes traversed by a packet and the modification of
its header fields.

– Packet injection: Tools that meet this parameter inject a certain number of specific
packets in the analyzed network to troubleshoot misbehaviors in the network.

• Interface: The interface required by the tool between control and data planes.

4.6 Concluding remarks
Debugging tools are the most miscellaneous group of SDN tools. They follow different approaches
and focus on different parts of the SDN architecture. Many tools in this category are based on
OpenFlow and support multiple versions of such protocol, thus they can be used in combination
with most of the popular SDN controller platforms and SDN-enabled switches. However, several
other tools implement custom Application Programming Interfaces (APIs). Those tools urge a deep
analysis on what parts of the SDN they aim to debug and, as a consequence, on how to model a
common interface.

5 MEMORY MANAGEMENT
Memory management is a critical part of any computer Operating System (OS), as it is the process
that controls and coordinates the computer memory to optimize overall system performance. The
terms memory management usually refer to operations such as memory allocation/deallocation,
virtualization, protection, mapping and swapping. Like the computer OS, SDN controllers have
the ability to observe and control hardware resources (i.e. network elements) while providing
programmatic interfaces to the applications to access those resources. For these reasons, SDN
controllers are often referred as Network Operating Systems (NOSs). Nevertheless, most of the
open source NOSs available nowadays force the developers of SDN applications to take care of
memory management tasks, like cleaning the memory of the switches from unused flow rules or
setting appropriate idle and hard timeouts to the installed rules. More practically, SDN applications
install the forwarding rules into the switch memory, mainly Ternary Content-Addressable Memory
(TCAM). However, this memory has a finite capacity and allows to accommodate only a few
thousand wildcard flow rules, while recent studies have shown that data centers can have up
to 10,000 network flows per second per server rack today [16]. Since TCAMs are power hungry,
expensive and require significant silicon space, increasing their size is not a viable solution to
reduce the risk of reaching the full capacity. In this context, we can divide the memory management
operations in two different categories: (i) deletion of unused flow rules from the switches’ memory
and (ii) other types of optimization of the memory usage.

5.1 Memory cleaning
A flow rule can be classified as unused for two main reasons: the application that installed the rule
has been deactivated or uninstalled from the NOS or the rule is never matched by the network
traffic. Current NOSs do not foresee any mechanism to automatically remove them. Such a behavior
is potentially harmful and may affect the stability of the network; in fact, the rules that have not
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been removed may match part of the incoming traffic, thus leading to undesired network actions
and preventing newly installed rules to work properly. Recent NOSs, such as ONOS, implement
mechanisms to purge entries on a per application basis, despite not automatically, while most
controllers leave this duty to the developers of SDN applications.
The problem of collecting and removing rarely matched flow rules has been tackled by the

authors of FRESCO [135]. FRESCO is a programming framework for advanced security. Among
other components, FRESCO offers a resource controller that monitors OF devices. The resource
controller performs two main functions: (i) the switch monitor, periodically collects switch status
information, such as the number of empty flow entries, and stores the collected information in the
switch status table, (ii) the garbage collector checks the switch status table to monitor whether the
flow table in an OF switch is nearing capacity, and then identifies and evicts the least used flow
rules.

The OF specifications [111] define two specific mechanisms, namely Eviction and Vacancy events,
which can be used by the developers for the control of the memory utilization to avoid getting the
memory full and the possible service outages that may happen consequently. Eviction enables
the OF switches to automatically eliminate the flow entries of lower importance. Such an eviction
mechanism is handled by the SDN applications that can (i) enable/disable it on a per table basis
and (ii) configure it by setting the importance of each flow entry. Vacancy events introduces a
mechanism enabling the SDN applications to get an early warning based on a capacity threshold
chosen by the SDN developer. This allows the applications to react in advance and avoid the
memory full condition.

5.2 Memory optimization
Despite current NOSs lack of an automatic memory management system, several approaches have
been proposed for an optimal usage of the memory resources (i.e. flow table space) of the network
devices.
The goal of CacheFlow [80] is to give network applications the illusion of an arbitrarily large

switch memory. It is achieved by defining a hardware-software hybrid switch design that relies on
rule caching mechanisms. Architecturally, CacheFlow consists of a component interposed between
the controller and the OF hardware switches. CacheFlow receives the OF commands from the
controller and uses the OF protocol to distribute the rules to the underlying switches. During this
process, CacheFlow selects a set of important rules from among the rules given by the controller
to be cached in the TCAM of the hardware switches, while redirecting the cache misses to the
software switches inside CacheFlow.
The swapping mechanism is one of the two functions of theMemory Management System

(MMS) for SDN controllers proposed in [98]. This mechanism monitors the occupancy of the
TCAM of SDN-enabled switches by intercepting the TABLE_FULL OpenFlow error messages and
the TABLE_STATUS OpenFlow events with reason VACANCY_DOWN. The TABLE_FULL error is used to
detect when the TCAM is full, while TABLE_STATUS events indicate that the remaining space in the
TCAM has decreased below a pre-defined threshold. Based on this OpenFlow events, the swapping
mechanism moves (swaps out) the least used flow entries from the TCAM of the switches to a
database maintained by the MMS. Since the MMS intercepts all the PACKET_IN OpenFlow messages,
it automatically (and transparently to the SDN applications) re-installs (swaps in) the previously
swapped out flow entries onto the TCAM when they are needed again to forward the traffic. The
authors implemented the MMS and the swapping mechanism for the ONOS platform by using
the Java NBI. However, in another work [35], they provide requirements and specifications for
implementing the MMS for other well-known SDN platforms such as OpenDaylight, Floodlight,
Beacon and Ryu.
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Table 4. Comparison table of the different memory management approaches

Approaches
Properties Description Type Mechanism Interface

FRESCO Eviction of the
least used flow rules Memory Cleaning Flow rule eviction FRESCO API

Eviction Eviction of the least
important flow rules Memory Cleaning Flow rule eviction OpenFlow 1.4+

Vacancy Events
Notification when

the TCAM is reaching
full capacity

Memory Cleaning,
Memory Optimization “Memory full” warning OpenFlow 1.4+

CacheFlow Arbitrarily large
virtual flow tables Memory Optimization Flow rule swapping OpenFlow 1.0

MMS Arbitrarily large
virtual flow tables Memory Optimization Flow rule swapping ONOS NBI

SmartTime Heuristic to compute
efficient idle timeouts

Memory Optimization,
Memory Cleaning Idle timeout optimization Floodlight NBI

Tag-in-Tag Replacement of flow
rules with shorter tags Memory Optimization Flow rule compaction N/A

DevoFlow
Leveraging exact
match rules to

save TCAM space
Memory Optimization Flow rule cloning N/A

SmartTime [148] employs an adaptive heuristic to compute idle timeouts for the flow rules. It
aims to optimize TCAM utilization (e.g. via eviction of flow rules) and, at the same time, to reduce
the number of table misses (and, as a consequence, the controller load). Its strategy is based on
the following features: a small initial timeout, a rapid ramp up for frequent flows, a maximum idle
timeout, a timeout reduction for short flows that repeat often but after a long gap, and proactive
eviction based on a threshold.

Tag-in-Tag [13] aims at providing a high level compaction of the flow entries in the TCAM
memories and reducing the TCAM power consumption. Tag-In-Tag achieves these goals by re-
placing the OF entries stored in the TCAM memories with two layers of tags. One tag (referred as
PATH TAG (PT)) exploits the availability of a unique path for individual flows from the ingress
switch to the egress switch that can be computed a priori. The second one (referred as FLOW
TAG (FT)) allows finer identification of the flows to enable flow specific actions. The Tag-In-Tag
concept is based on commonly observed phenomena of networks: (i) a flow takes a path, (ii) the
paths are deterministic set (all source-destination paths are known a priori) and (iii) multiple flows
can take the same path. Through various experiments, authors show that the Tag-In-Tag approach
can accommodate 15 times more flow entries in a fixed size TCAM whereas power consumption
per-flow is reduced by 80% compared to an “unoptimized” SDN-enabled switch.

Authors of DevoFlow [29] propose a modification of the OF model where part of the control is
delegated back to the switches, while the controller maintains control over only targeted significant
flows. By modifying the action of wildcard rules, it promotes the use of the exact-match lookup
table, thus reducing the use of the TCAM. As this adaptation requires an enhancement of the switch
devices, DevoFlow was evaluated in a simulated environment. The results show that DevoFlow
uses 10–53 times fewer flow table entries at an average switch, and uses 10–42 times fewer control
messages.

5.3 Summary of the different memory management approaches
Table 4 summarizes and compares the memory management approaches, based on:

• Description: The basic idea behind the proposed approach, in short.
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• Type: Two main categories: memory cleaning and memory optimization. Both have the
objective of saving TCAM memory space for newer rules and of improving the performance
of the network. Memory cleaning includes mechanisms conceived to remove the flow rules
that meet certain criteria (e.g. low traffic counters). Mechanisms in the Memory optimization
category aim at saving TCAM space without deleting the rules but improving the way this
space is used.
• Mechanism: Brief description of the technical solution proposed by each approach. Eviction
means the action of removing the flow rules from the TCAM memory. Other approaches
aim at saving TCAM space by compacting the rules, by tampering with the idle timeouts of
by moving the rules to a different (often slower) memory. Warnings is a mechanism defined
in the OF specifications v1.4+ (called Vacancy Events) that enables the controller to react in
advance before the TCAM gets full.
• Interface: The interface between the tool and the SDN controller. This information is not
available for Tag-in-Tag and DevoFlow, since such works focus on the description of a mecha-
nism without providing any concrete implementation detail.

5.4 Concluding remarks
Eviction and vacancy events APIs are available in OpenFlow 1.4 or newer, while CacheFlow only
works in SDN environments based on OpenFlow 1.0. That is, they impose strict constraints on
SDN controllers and SDN-enabled devices. On the other hand, FRESCO, MMS and SmartTime
leverage the NBI of the controller that hosts them. However, although their implementation is
based on different APIs, they require a relatively small set of messages and services to accomplish
the management of the switches’ memory. In summary, such tools need to: (i) be notified on new
flow arrivals, (ii) modify of the switches’ flow table, (iii) collect flow statistics from switches, (iv)
receive flow removal notifications, and (v) receive notifications related to the status of the TCAM
capacity.

6 PROFILING
In software engineering the term profiling is known as the performance analysis of a program.
Commonly, profiling a program refers to gather relevant data, such as the execution time or its
memory consumption. The collection of data, as opposed to static code analysis, is carried out while
the program is being executed. A profiler can provide different outcomes including an execution
trace or a statistical summary. Another term used in reference to profiling is monitoring, although
the latter implies a passive behavior and the former an active one, where the current scenario could
be modified based on the gathered information. In this section, a summary of the most relevant
profilers for SDN environments is provided.

OFCBenchmark [74] is a multi-thread OF controller benchmark tool that analyzes the per-
formance of SDN controller platforms by generating requests for packet forwarding rules and
watching for responses from the controller. It improves Cbench [134], a single-thread benchmarking
tool for controller, with improved scalability, modularity and the ability to provide fine-grained per-
formance statistics. The authors compare OFCBenchmark with Cbench in terms of performance by
measuring the throughput of the NOX controller. Although OFCBenchmark implements advanced
features, its performance results are comparable with the ones produced by Cbench.

SPIRIT [78] is an SDN profiler that automatically discovers bottlenecks in SDN applications.
SPIRIT connects to the NBI of the SDN controller to collect profiling data of the SDN application
under testing. At the same time, SPIRIT records the CPU load of the machine where the controller
is running. The collected data is then analyzed for discovering any critical path in the execution

20



flow of the SDN application. A prototype of SPIRIT has been implemented as a proof-of-concept
and used to profile Floodlight and ONOS applications.
The NetIDE profiler tackles the problem of profiling SDN environments by leveraging the

NetIDE Network Engine architecture [34]. It comprises an Application profiler and a Network
Profiler. The former provides the execution time of network applications at different granularity
levels (from application modules to specific software functions), while the latter retrieves network
statistics such as the current network load. Although the NetIDE profiler uses a dedicated interface
(based on the NetIDE API), it can be potentially used with any control platform thanks to the
adaptors provided by the Network Engine platform. The code is publicly available at [55].
To better balance the monitoring overhead and the anomaly detection accuracy, the author of

OpenWatch [169] proposes a prediction-based algorithm that dynamically change the granularity
of measurement along both spatial and temporal dimensions. OpenWatch starts by collecting
coarse-grained data from the switches, then the collected information is compared with the data
obtained previously. If an anomaly is detected, it iteratively adjusts the wildcard rules and reports
fine-grained information to the anomaly detection applications. Additionally, in case of anomaly,
the reporting frequency is increased.

nprof: nprof is network profiler included in the NetSight [63] platform (presented in Section 4.4).
It focuses on the data plane and profiles network links to understand the traffic characteristics
and routing decisions that determine the link utilization. nprof combines topology information
and packet histories to show which switches are injecting traffic to a specific link and how much.
Furthermore, nprof is able to identify how subsets of traffic are being routed across the network.
This information helps to understand how to distribute the traffic load in the network.

OpenNetMon [145] is a passive flow-based monitoring system. It collects samples of traffic and
estimates per-flow QoS metrics such as throughput and packet loss. It is implemented as a module
for the POX controller.

Sonata [58] presents an architecture for refined active monitoring. Sonata allows operators to
express network monitoring queries that are efficiently partitioned among the network switches,
reducing the overall data rate and, therefore, ensuring scalable traffic rates of several terabits per
second. Sonata’s framework has been implemented in Ryu and OpenFlow 1.3, but is planned to be
extended and optimized with P4 [21] in the future.

FlowSense [163] is a monitoring tool for OF-based networks that takes advantage of the control
channel to provide high accuracy link utilization monitoring with zero measurement cost. Instead of
polling the devices to retrieve traffic statistics, FlowSense relies on OF messages such as PACKET_IN
and FLOW_REMOVED sent by the switches to the controller. Based on its design, FlowSense works
in reactive OF deployments, where switches generate control messages every time a new flow
arrives or a flow entry expires. On the other hand, there are some scenarios where the proposed
approach fails. For instance, when there is little or no control traffic or when the input port field is
wildcarded.

Payless [27] is a network monitoring framework for SDN that operates on top of the OF
controllers, leveraging the controller’s NBI to collect and aggregate network statistics. Moreover,
Payless exposes to applications a uniform and high-level RESTful API for expressing monitoring
requirements. Like FlowSense described above, Payless intercepts PACKET_IN and FLOW_REMOVED
messages to keep track of flow installations and removals. The authors provide a comparison
between Payless and FlowSense, and they demonstrate that Payless can achieve higher accuracy of
statistics collection than FlowSense. Payless has been implemented as an application for Floodlight.

Following a similar approach to Payless, PathMon [149] enhances it by providing the flexibility
of querying path-specific flow statistics at any aggregation levels.
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Table 5. Comparison table of the different profiling tools

Tools
Properties Description Type Target Interface

cbench Benchmarking
of SDN controllers - Control Plane OpenFlow 1.0

OFCBenchmark Benchmarking
of SDN controllers - Control Plane OpenFlow 1.0

SPIRIT SDN application profiler - Control plane Floodlight NBI
ONOS NBI

NetIDE profiler Application monitoring and
data plane statistics collection Active Control and

data planes NetIDE API

OpenWatch Monitoring tool that
balances overhead and accuracy Active Data plane N/A

nprof Link utilization monitor Active Data plane NetSight API
OpenNetMon End-to-end QoS monitor Active Data plane POX NBI

Sonata Optimized network monitoring
queries Active Data plane Sonata API

FlowSense Link utilization monitor Passive Data plane Not specified
controller NBI

Payless Framework that combines
active and passive monitoring Active/Passive Data plane Floodlight NBI

PathMon Path-specific flow statistics
collection Active/Passive Data plane Floodlight NBI

SDN Interactive
Manager

Control channel monitor
Data plane monitor Active/Passive Data Plane Floodlight NBI

Network State
Collection Methods

Analysis of active/passive methods
for monitoring the data plane Active/Passive Data plane N/A

−: Means not applicable.

SDN Interactive Manager [64] is an OF-based monitoring software which: (i) monitors the
resource consumption and control channel load, (ii) presents aggregated statistics and (iii) supports
the configuration of network parameters that affect the analyzed metrics. The SDN Interactive
Manager connect to the controller’s RESTful NBI and it is accessible by the users through a GUI. A
prototype of the SDN Interactive Manager has been implemented for the Floodlight controller.

The work Network State Collection Methods [10] does not introduce any specific SDN tool.
Instead, the authors provide an analysis of active and passive network state collection mechanisms
and their impact on SDN applications. The analysis focuses on OF-based mechanisms for collecting
network state information, which involve the use of the OF API to keep track of control messages
(passive mode) and to collect flow, port or other statistics (active mode). Through a series of experi-
ments, the authors demonstrate that in case of low-variation traffic, where flows are comparable in
byte counts, the application based on passive state collection performs better than the one that
relied on active state collection. On the other hand, the performance of the application that relies on
active state collection is mainly dependent on the polling periods: as the polling period increases,
the performance degrades.

6.1 Summary of the different profiling tools
Table 5 summarizes and compares the profiling tools, based on:
• Description: Concise description of the tool.
• Type: Only meaningful for data plane profilers. Active profilers send messages or actively
configure the network devices, passive profilers silently monitor the control channel.
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• Target: Either data plane or the control plane (controller and SDN applications).
• Interface: The interface between the tool and the SDN controller. This information is not
available for OpenWatch and Network State Collection Methods, since the former focuses on
the algorithm rather that implementing a tool for SDN controllers, the latter presents an
overview of active and passive network state collection mechanisms.

6.2 Concluding remarks
Control plane profilers use the SBI to stress the controller and to measure how they perform when
handling “new flow” messages. This is only partially true for SPIRIT, which also connects to the
controller’s NBI to monitor the applications. The NBI of the SDN controller is also used by data
plane profilers to collect statistic counters from the SDN switches or to intercept network events
such as new flow arrivals or flow rule expirations. A different approach is proposed by the NetIDE
profiler, which is potentially compatible with any SDN controller thanks to the NetIDE platform.
An open question remains though: how to effectively profile the network without affecting it?

7 SIMULATORS AND EMULATORS
Network emulators and simulators allow researchers and network practitioners to evaluate the
behavior of networks when subjected to a given workload. With the introduction of the OpenFlow
protocol, well-known simulators have been extendedwith additional components to provide support
to OF-based experiments. At the same time, many SDN-enabled emulators have been developed
based on software switches, such as Open vSwitch (OvS) [51], CPqD’s ofsoftswitch13 [40] or Indigo
Virtual Switch (IVS) [44].

Mininet [93] is a network emulator that provides a rapid prototyping workflow for SDN, by
combining lightweight virtualization with an extensible CLI and API on one physical machine. The
different nodes in Mininet are simply shell processes with their own network namespace, such
as interfaces, ports, and routing tables. The switches shaping the network are software-based OF
switches. Once the network is created, Mininet includes a network-aware command line interface
(CLI) that allows developers to control and manage the entire network, interacting with it running
commands on hosts, verifying switch operation, and even inducing failures or adjusting link
connectivity. Hosts can also execute any other command installed in the OS and accessible by
the shell. In addition, Mininet provides the opportunity to use a Python API to create custom
experiments, topologies, and node types.
As originally implemented, it did not provide any assurance of performance fidelity and then
Mininet-HiFi [61] improved it. Those enhancements were included from the release 2.0.0 in
Mininet, a major upgrade that expanded Mininet’s scope from functional testing to performance
testing. Mininet also has a Cluster Edition prototype [94], although it is considered experimental
and MaxiNet (below) is recommended instead. Another clustering examples for Mininet have
been also described in Mininet-CE [9] and DOT (below). Finally, Datacenter in a box [142] and
SDDC [30] are two different proposals for an SDN data center experimental framework.
When emulating large networks with both high link bandwidths and high traffic volume, the

computational complexity of the emulation overwhelms today’s computers. In this way, Max-
iNet [154] fixes those limitations of Mininet, using multiple physical machines for large-scale SDN
emulations. The whole process of mapping and deploying the network to be emulated onto the
physical environment is transparent to the user, since MaxiNet is an abstraction layer connecting
multiple, unmodified Mininet instances running on different workers. A centralized API is provided
for accessing this cluster of Mininet instances and GRE tunnels are used to interconnect nodes
emulated on different workers. Therefore, MaxiNet works as a front end for Mininet that sets
up all Mininet instances, invokes commands at the nodes and sets up the tunnels required for
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proper connectivity. MaxiNet also includes traffic generators: DCT2Gen [155] emulates the traffic
behavior of data centers and netSLS [156] combines Hadoop’s Yarn Scheduler Load Simulator
(SLS) [49] with MaxiNet to emulate Hadoop network traffic based on artificial or real world job
traces.

Distributed OF Testbed (DOT) [126] proposes a highly scalable emulator for SDN that provi-
sions the emulated network across a cluster of machines. UnlikeMininet andMaxiNet, DOT provides
guaranteed compute and network resources for the emulated components (such as switches, hosts
and links).

OFNet [132] is an recent SDN emulator that aims to bring the capabilities of Mininet plus some
monitoring and traffic generator tools, as the author considers it is difficult to debug SDN networks
just via pinging, as it is usually done with Mininet. OFNet is an open source project currently
distributed as a virtual machine image, but the code will also be available soon.

Virtual NetworkOverlay(ViNO) [15] is an orchestration service that creates arbitrary network
topologies with OvS switches and VMs. The overlay interconnection between VMs is provided
through VXLAN encapsulation [96]. Similarly to Mininet, the user can specify the network topology
using a Python-based Domain Specific Language (DSL). Differently from Mininet and MaxiNet,
ViNO sits on top of the OpenStack platform and it is particularly focused onmigrating VM containers
across heterogeneous platforms with minimal downtime, especially meaningful for data center
networks. For simulating load in servers they use JMeter [48] in their tests.

EstiNet [150] combines the advantages of both simulation and emulation. In a network simulated
by EstiNet, each simulated host can run the real Linux operating system, and any real application
program can run on a simulated host without any modification. The advantage of the EstiNet’s
approach over emulators such as Mininet, is that the controllers can correctly control the switches
based on the simulation clock, which can be faster or slower than the real time. The authors have
used EstiNet to perform functional validation and performance evaluation of several NOX/POX
components and protocols such as the Learning Bridge and the Spanning Tree Protocols.

fs-sdn [59] is a simulator based on the fs [138] simulation platform that was developed for
realistic test and validation of standard networks. fs is a Python-based tool that uses discrete-
event simulation techniques for synthesizing the network measurements and the measurements it
produces are accurate down to the timescale of one second. fs-sdn extends fs by incorporating the
POX controller for prototyping and evaluating SDN-based applications.

OMNeT++ [118, 146] is a C++ based discrete event simulator for modeling communication
networks, multiprocessors and other distributed or parallel systems. To simulate SDN environments
in OMNeT++, the OF components are integrated using the INET Framework [88], where an OF
switch and a basic controller are available, as well as OF messages, such as: PACKET_IN, PACKET_OUT
or FLOW_MOD. OMNeT++ implements two modular OF nodes: an OF switch, which highlights the
separation of the data and the control plane, and an OF controller, which provides public methods to
send OF messages to the connected OF switch, while the actual controller behavior is implemented
in a separate module.

ns-3 [108] is a C++ based discrete event simulator. ns-3 simulations can use OF switches, which
are configurable via OF API and designed to express basic use of the OF protocol by maintaining
virtual flow tables and TCAM memories to provide OF-like results. ns-3 implements its own OF
controller which simulates the behavior of a real controller. External modules can be used to extend
ns-3, such as OFSwitch13 [26] which brings compatibility with OF 1.3.

7.1 Summary of the different simulators and emulators
Table 6 summarizes and compares the simulators and emulators, based on:
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Table 6. Comparison table of the different SDN simulators/emulators

Tools
Properties Description Type Scalability Interface

Mininet Open vSwitch-based
SDN network emulator Emulator ∼100 nodes OpenFlow

1.0, 1.2, 1.3

MaxiNet
Mininet-based
large-scale SDN
network emulator

Emulator ∼3200 nodes OpenFlow
1.0, 1.2, 1.3

DOT
Open vSwitch-based
large-scale SDN
network emulator

Emulator Not specified OpenFlow
1.0, 1.3

OFNet
SDN emulator
including

traffic generator
Emulator Not specified

OpenFlow
(version not
specified)

ViNO
Orchestrator

of virtual networks
focused on VM migration

Emulator Not specified Not specified

EstiNet OpenFlow emulator
and simulator Emulator/Simulator Thousands nodes OpenFlow

1.0, 1.3.4

fs-sdn Extension of the
fs simulator Simulator ∼100 nodes POX NBI

OMNeT++
Discrete event
simulator with

OpenFlow support
Simulator Unlimited OpenFlow 1.0

ns-3
Discrete event
simulator with

OpenFlow support
Simulator Unlimited

OpenFlow 0.8.9
(1.3 with third-
party plugins)

• Description: Concise description of the tool.
• Type: This parameter classifies the tools in two types, simulators and emulators.
• Scalability: Scalability of the tools in terms of number of nodes simulated/emulated.
• Interface: The interface between the tool and the SDN controller. In case of OMNeT++ and
ns-3, it refers to interfaces between internal OF-enabled nodes simulating controller and
switches.

7.2 Concluding remarks
Several emulators have appeared to ease experimentation in the OpenFlow domain. Most of them
support OpenFlow from version 1.0 to version 1.3.4, hence working with most of the SDN controllers
available. If we exclude fs-sdn, which incorporates the POX controller to enable OpenFlow 1.0
experiments, the other simulators do not interface with regular SDN controllers. They instead
simulate the SDN controller’s behavior with specific internal modules (or nodes).

8 ARE WE READY TO DRIVE SOFTWARE DEFINED NETWORKS?
Probably the answer is not yet. However, we should stay optimistic and motivate further research
in this area. In this chapter, we briefly summarize the main directions to be investigated toward the
next generation SDN management framework.

8.1 Immature interfaces
Along the article, we have introduced the concept of SDN tool and discussed its role in the manage-
ment of SDN-enabled networks. Together with the classification of the tools, we have analyzed the
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interfaces they use to interact with the different planes of the SDN architecture. Specifically, we
have found that the OpenFlow protocol and Controller plane NBIs are the most used interfaces.
However, while the latter approach limits the applicability of the tool to a specific SDN controller
platform (NBIs are not compatible with each others across different platforms), using a SBI such
as OpenFlow as a management interface implies forcing the whole SDN environment (data plane
included) to stick to a specific control protocol. This is particularly questionable when protocols
such as OpenFlow will presumably be substituted in the future by new ones, like P4.

Many other approaches overcome the limitations of âĂŃexisting interfaces by defining custom
protocols and data models, although not generic enough to cover all tools, which proves the lack of
consensus.
Tool design criteria are diverse because the management-control functions are defined quite

generally by the ONF. At the same time, the NBI and SBI are still under evolution. As a result,
developers do not have a clear picture of where to deploy their tools and, furthermore, these
developments are prone to be deprecated as these interfaces (and their associated protocols) are
immature or limited (e.g. OpenFlow still lacks many desirable features). Aside from deciding whether
using one or more interfaces, research on the evolution of these interfaces and their requirements
is imperative for effective and long-lasting management designs.

8.2 The SDN toolbox
Currently, a wide range of SDN tools exist (and we envision more are yet to come). However, they
are being implemented following miscellaneous ideas and requirements, thus associated to specific
architecture models or particular SDN controller platforms. Therefore, most of them can be hardly
adopted in a production environment where the maintenance of the network is a critical task, and
where patching the components of the SDN network to merge the different approaches is usually
not a viable option.

A first step to foster the evolution of SDN platform interfaces (currently immature, as mentioned
previously) could be creating an SDN toolbox. SDN tools are heterogeneous, hence defining a
toolbox would help setting some boundaries or common characteristics of tools, which would
facilitate the development of these interfaces and, therefore, rip the dependence between tools and
SDN platforms. Afterwards, new tools developed might (or might not) follow this design, but at
least if they do, they will be independent and not anchored to a single SDN framework. At the same
time SDN framework could benefit from this as well, if they accomplish the definition of these
evolved interfaces for management, they could have many SDN tools associated with no effort.
After the analysis completed in this survey, we have categorized a list of tools and minimum

requirements that we consider fundamental for a generalized SDN toolbox, shown in Table 7. Each
parameter is explained in the following:

• Features: Set of the most common features associated with the specific tool. They could be
considered the minimum properties a tool of that type should accomplish.
• Interfaces: Frequently used interfaces leveraged to develop these tools. For the interfaces,
we are pointing at the planes currently defined by the ONF, following the SDN architecture.
For example, an interface in the Data plane would have access to the information related to
network devices, such as flow tables or packets.
• Data models: Communication via the previous SDN interfaces implicitly requires the defini-
tion of the data models that will be exchanged through them. These models aim to represent
information in a standardized way, so that not only the communication is feasible between
SDN tools and platforms, but also among tools from different developers, for example. For
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Table 7. Generalized list of SDN tools: Features and Requirements

Tools
Properties Features Interfaces Data models Remaining questions

Composition Network slicing
Conflict resolution Control plane Common functionality

primitives
How to move toward

automatic composition?

Debugging
Behavior verification
Checking forwarding

App debugging and fine-tuning

Application, Control
and Data planes

Packet model
Flow table model

How to define a process/flow
for SDN debugging?

Resource management Scalability
Energy consumption Control and Data planes Resource definition

How to define thresholds
for underused/overused

resources?

Profiling Optimization of
network applications Control and Data planes Statistics model

App performance model
How to measure the network

without affecting it?

Simulation Behavior verification
App debugging and fine-tuning

Application and
Control planes

Network app model
SBI protocol model

How to be as close to
real networks as possible?

instance, OpenFlow defines a model to represent a packet, but not for network device re-
sources.
• Remaining questions: Apart from the interfaces and associated data models to be defined,
some questions are still unanswered and require active investigation.

8.3 Toward the next generation SDN management framework
We envision the following challenges and future research directions for the standardization of the
management functions, to drive and help SDN environments thrive:

(1) Create a generalized list of SDN tools: The reason for this list is to establish a starting
point to work on, as currently the different developments are commingled. We found out
that currently there is not even a clear distinction among types of tools (e.g. some tools
with same functionality are named differently). Therefore, setting up an initial list would
help classifying the requirements and splitting design tasks. Although this survey already
introduces an initial list, it requires further discussion across different standardization groups.

(2) Cooperation among different open source SDN communities: If the most popular open
source SDN frameworks reached an agreement for interfaces and data models, the evolution
toward a standardized management framework would follow easily. To achieve this, the
most popular SDN frameworks (at the time of writing this article, ODL and ONOS) should
proactively work on some common criteria. However, currently they are evolving based on
external (independent) petitions.
For example, ONOS is currently evolving the platform based on work brigades, in which
any community member can participate. If somebody wants to integrate an SDN tool, could
do it by proposing a brigade. But the decisions at this brigade might not be the same if
the same person tries to integrate it in ODL, as their communities are isolated. In fact, this
dilemma goes beyond, as ideally both SDN frameworks could merge if their communities
would proactively communicate, which might occur in the near future.

(3) Coordination with production environments and telcos: Currently, companies applying
SDN in their networks are usually customizing SDN frameworks on their own. An effort
should be made in order to list common requirements for SDN management, so that different
SDN communities could take the token and work together on it.
The problem behind is that usually telcos are unwilling to reveal their products and deploy-
ments, and particularly in this case where SDN is an emergent technology. Furthermore,
many companies still prefer to build (and sell afterward) their own close and opaque solutions,
which burdens the evolution toward a standardized management framework.
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9 CONCLUSIONS
In this paper, we provided an overview of the management and operational tool that facilitates the
development, deployment and/or maintenance of SDN-based networks. We started by classifying
the tools based on their features and objectives. Then we presented the current SDN architecture and
interfaces, and howwe envision the role of the tools in it. Afterward, we provided a short description
for each tool, a comparison and a conclusion for each category. Finally, we discussed issues,
challenges, and future research directions regarding management in SDN. The joint conclusion is
that management functions in SDN are still set aside as a secondary requirement and, therefore,
they need further standardization efforts in the forthcoming years; particularly the SDN tool concept
should be developed. In the meantime, we expect that this comprehensive survey on management
could guide different stakeholders to understand and evolve the future of SDN management.
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