
Computer Network
Modelling #1

PhD. Antonenko V.A.

Additional Chapters of Computer
Networks Antonenko V.A. 2

Goals Of This Lecture

 Introduce Modeling
 Introduce Simulation
What We Need for Simulation?
Simulation Model Building
Mininet
Big Network Prototyping

“Learn by Doing”--Lots of Case Studies

02.11.2020

Additional Chapters of Computer
Networks Antonenko V.A. 3

What Is A Model ?

 A Representation of an
object, a system, or an idea
in some form other than that
of the entity itself.

(Shannon)

02.11.2020

Additional Chapters of Computer
Networks Antonenko V.A. 4

Types of Models:

Physical
(Scale models, prototype plants,
…)

Mathematical
(Analytical queueing models,
linear programs, simulation)

02.11.2020

Additional Chapters of Computer
Networks Antonenko V.A. 5

What is Simulation?

 A Simulation of a system is the operation
of a model, which is a representation of
that system.

 The model is amenable to manipulation
which would be impossible, too expensive,
or too impractical to perform on the
system which it portrays.

 The operation of the model can be studied,
and, from this, properties concerning the
behavior of the actual system can be
inferred.

02.11.2020

Additional Chapters of Computer
Networks Antonenko V.A. 6

Applications:

Designing and analyzing
manufacturing systems

Evaluating H/W and S/W
requirements for a computer system

Evaluating a new military weapons
system or tactics

Determining ordering policies for an
inventory system

Designing communications systems
and message protocols for them

02.11.2020

Additional Chapters of Computer
Networks Antonenko V.A. 7

Applications:(continued)

Designing and operating
transportation facilities such as
freeways, airports, subways, or ports

Evaluating designs for service
organizations such as hospitals, post
offices, or fast-food restaurants

Analyzing financial or economic
systems

02.11.2020

Additional Chapters of Computer
Networks Antonenko V.A. 8

Steps In Simulation and
Model Building

1. Define an achievable goal
2. Put together a complete mix of

skills on the team
3. Involve the end-user
4. Choose the appropriate simulation

tools
5. Model the appropriate level(s) of

detail
6. Start early to collect the

necessary input data
02.11.2020

Additional Chapters of Computer
Networks Antonenko V.A. 9

Steps In Simulation and
Model Building(cont’d)

7. Provide adequate and on-going
documentation

8. Develop a plan for adequate
model verification

(Did we get the “right
answers ?”)

9. Develop a plan for model
validation

(Did we ask the “right
questions ?”)

10. Develop a plan for statistical
output analysis

02.11.2020

Additional Chapters of Computer
Networks Antonenko V.A. 10

Define An Achievable Goal

 “To model the…” is NOT a goal!

“To model the…in order to select/
determine feasibility/…is a goal.

Goal selection is not cast in

concrete

Goals change with increasing

insight02.11.2020

Additional Chapters of Computer
Networks Antonenko V.A. 11

Put together a complete
mix of skills on the team

We Need:

-Knowledge of the system under investigation

-System analyst skills (model formulation)

-Model building skills (model Programming)

-Data collection skills

-Statistical skills (input data representation)

02.11.2020

Additional Chapters of Computer
Networks Antonenko V.A. 12

Put together a complete
mix of skills on the team(continued)

We Need:

-More statistical skills (output data
analysis)

-Even more statistical skills (design of
experiments)

-Management skills (to get everyone
pulling in the same direction)

02.11.2020

Additional Chapters of Computer
Networks Antonenko V.A. 13

INVOLVE THE END USER

-Modeling is a selling job!

-Does anyone believe the results?

-Will anyone put the results into
action?

-The End-user (your customer) can
(and must) do all of the above BUT,
first he must be convinced!

-He must believe it is HIS Model!02.11.2020

Additional Chapters of Computer
Networks Antonenko V.A. 14

Choose The Appropriate Simulation
Tools

 Assuming Simulation is the
appropriate means, three
alternatives exist:

1. Build Model in a General
Purpose Language

2. Build Model in a General
Simulation Language

3. Use a Special Purpose
Simulation Package

02.11.2020

Additional Chapters of Computer
Networks Antonenko V.A. 15

MODELLING GENERAL PURPOSE
LANGUAGES

 Advantages:
– Little or no additional software cost
– Universally available (portable)
– No additional training (Everybody knows…(language

X) !)

 Disadvantages:
– Every model starts from scratch
– Very little reusable code
– Long development cycle for each model
– Difficult verification phase

02.11.2020

Additional Chapters of Computer
Networks Antonenko V.A. 16

GEN. PURPOSE LANGUAGES USED
FOR SIMULATION

FORTRAN
– Probably more models than any other

language.
PASCAL

– Not as universal as FORTRAN
MODULA

– Many improvements over PASCAL
ADA

– Department of Defense attempt at
standardization

C, C++
– Object-oriented programming language

02.11.2020

Additional Chapters of Computer
Networks Antonenko V.A. 17

MODELING W/ GENERAL
SIMULATION LANGUAGES

 Advantages:
– Standardized features often needed in

modeling
– Shorter development cycle for each model
– Much assistance in model verification
– Very readable code

 Disadvantages:
– Higher software cost (up-front)
– Additional training required
– Limited portability

02.11.2020

Additional Chapters of Computer
Networks Antonenko V.A. 18

GENERAL PURPOSE SIMULATION
LANGUAGES

 GPSS
– Block-structured Language
– Interpretive Execution
– FORTRAN-based (Help blocks)
– World-view: Transactions/Facilities

 SIMSCRIPT II.5
– English-like Problem Description Language
– Compiled Programs
– Complete language (no other underlying

language)
– World-view: Processes/ Resources/

Continuous

02.11.2020

Additional Chapters of Computer
Networks Antonenko V.A. 19

GEN. PURPOSE SIMULATION
LANGUAGES (continued)

 MODSIM III
– Object-Oriented Language
– Modularity Compiled Programs
– Based on Modula2 (but compiles into C)
– World-view: Processes

 SIMULA
– ALGOL-based Problem Description Language
– Compiled Programs
– World-view: Processes

02.11.2020

Additional Chapters of Computer
Networks Antonenko V.A. 20

GEN. PURPOSE SIMULATION
LANGUAGES (continued)

 SLAM
– Block-structured Language
– Interpretive Execution
– FORTRAN-based (and extended)
– World-view: Network / event / continuous

 CSIM
– process-oriented language
– C-based (C++ based)
– World-view: Processes

02.11.2020

Additional Chapters of Computer
Networks Antonenko V.A. 21

MODELING W/ SPECIAL-PURPOSE
SIMUL. PACKAGES

 Advantages
– Very quick development of complex models
– Short learning cycle
– No programming--minimal errors in usage

 Disadvantages
– High cost of software
– Limited scope of applicability
– Limited flexibility (may not fit your specific

application)

02.11.2020

Additional Chapters of Computer
Networks Antonenko V.A. 22

SPECIAL PURPOSE PACKAGES USED
FOR SIMUL.

 NETWORK II.5
– Simulator for computer systems

 OPNET
– Simulator for communication networks,

including wireless networks
 COMNET III

– Simulator for communications networks
 SIMFACTORY

– Simulator for manufacturing operations

02.11.2020

Additional Chapters of Computer
Networks Antonenko V.A. 23

THE REAL COST OF
SIMULATION

Many people think of the cost of a
simulation only in terms of the
software package price.

There are actually at least three
components to the cost of
simulation:

1. Purchase price of the software
2. Programmer / Analyst time
3. “Timeliness of Results”

02.11.2020

Additional Chapters of Computer
Networks Antonenko V.A. 24

TERMINOLOGY

System
– A group of objects that are joined

together in some regular interaction
or interdependence toward the
accomplishment of some purpose.

– Entity
– An object of interest in the system.
– E.g., customers at a bank

02.11.2020

Additional Chapters of Computer
Networks Antonenko V.A. 25

TERMINOLOGY (continued)

Attribute
– a property of an entity
– E.g., checking account balance

Activity
– Represents a time period of specified

length.
– Collection of operations that

transform the state of an entity
– E.g., making bank deposits

02.11.2020

Additional Chapters of Computer
Networks Antonenko V.A. 26

TERMINOLOGY (continued)

Event:
– change in the system state.
– E.g., arrival; beginning of a new

execution; departure
State Variables

– Define the state of the system
– Can restart simulation from state

variables
– E.g., length of the job queue.

02.11.2020

Additional Chapters of Computer
Networks Antonenko V.A. 27

TERMINOLOGY (continued)

Process
– Sequence of events ordered on time

 Note:
– the three concepts(event, process,and

activity) give rise to three alternative
ways of building discrete simulation
models

02.11.2020

Additional Chapters of Computer
Networks Antonenko V.A. 28

A GRAPHIC COMPARISON OF
DISCRETE SIMUL. METHODOLOGIES

E1 E2
/E3

E4

A1 A2

A1

E1’ E2’ E3’

A2

E4’

P1

P2

Simulation Time

02.11.2020

Additional Chapters of Computer
Networks Antonenko V.A. 29

EXAMPLES OF SYSTEMS AND
COMPONENTS

Note: State Variables may change continuously (continuous sys.)
over time or they may change only at a discrete set of points
(discrete sys.) in time.

02.11.2020

System Entities Attributes Activities Events State
Variables

Banking Customers Checking
account
balance

Making
deposits

Arrival;
Departure

of busy
tellers; # of
customers
waiting

Additional Chapters of Computer
Networks Antonenko V.A. 30

SIMULATION “WORLD-
VIEWS”

Pure Continuous Simulation

Pure Discrete Simulation
– Event-oriented
– Activity-oriented
– Process-oriented

Combined Discrete / Continuous

Simulation
02.11.2020

Additional Chapters of Computer
Networks Antonenko V.A. 31

Examples Of Both Type
Models

Continuous Time and Discrete
Time Models:
CPU scheduling model vs. number
of students attending the class.

02.11.2020

Additional Chapters of Computer
Networks Antonenko V.A. 32

Examples (continued)

Continuous State and Discrete
State Models:
Example: Time spent by students
in a weekly class vs. Number of
jobs in Q.

02.11.2020

Additional Chapters of Computer
Networks Antonenko V.A. 33

Stochastic vs. Deterministic

02.11.2020

n In deterministic models, the output of
the model is fully determined by the
parameter values and the initial
conditions.

n Stochastic models possess some
inherent randomness. The same set of
parameter values and initial conditions
will lead to an ensemble of different
outputs.

n Obviously, the natural world is
buffeted by stochasticity. But,
stochastic models are considerably
more complicated.

Additional Chapters of Computer
Networks Antonenko V.A. 34

MODEL THE APPROPRIATE LEVEL(S)
OF DETAIL

n Define the boundaries of the system
to be modeled.

n Some characteristics of “the
environment” (outside the
boundaries) may need to be
included in the model.

n Not all subsystems will require the
same level of detail.

n Control the tendency to model in
great detail those elements of the
system which are well understood,
while skimming over other, less well
- understood sections.

02.11.2020

Additional Chapters of Computer
Networks Antonenko V.A. 35

START EARLY TO COLLECT THE
NECESSARY INPUT DATA

Data comes in two quantities:
TOO MUCH!!
TOO LITTLE!!

With too much data, we need
techniques for reducing it to a form
usable in our model.

With too little data, we need
information which can be
represented by statistical
distributions.

02.11.2020

Additional Chapters of Computer
Networks Antonenko V.A. 36

PROVIDE ADEQUATE AND ON-GOING
DOCUMENTATION

In general, programmers hate to document.
(They love to program!)

Documentation is always their lowest priority
item. (Usually scheduled for just after the
budget runs out!)

They believe that “only wimps read manuals.”
What can we do?

– Use self-documenting languages
– Insist on built-in user instructions(help

screens)
– Set (or insist on) standards for coding style

02.11.2020

Additional Chapters of Computer
Networks Antonenko V.A. 37

DEVELOP PLAN FOR ADEQUATE
MODEL VERIFICATION

Did we get the “right answers?”

Simulation provides something that no
other technique does:

Step by step tracing of the model
execution.

This provides a very natural way of
checking the internal consistency of
the model.

02.11.2020

Additional Chapters of Computer
Networks Antonenko V.A. 38

DEVELOP A PLAN FOR MODEL
VALIDATION

VALIDATION:“Doing the right thing”
 Or “Asking the right questions”

How do we know our model represents
the

system under investigation?
– Compare to existing system?
– Deterministic Case?

02.11.2020

Additional Chapters of Computer
Networks Antonenko V.A. 39

DEVELOP A PLAN FOR STATISTICAL
OUTPUT ANALYSIS

How much is enough?

Long runs versus Replications

Techniques for Analysis

02.11.2020

But what is networking?

02.11.2020
Additional Chapters of Computer

Networks Antonenko V.A. 40

A Plethora of Protocol Acronyms?

BGP
ARP

HTTP

DNS

PPP

OSPF

DHCP

TCP

UDP

SMTP

FTP

SSH

MAC

IPRIP

NAT

CIDR

VLAN VTP

NNTP

POP

IMAP

RED
ECN

SACK

SNMP

TFTP

TLS

WAP
SIP IPX

STUN

RTP

RTSP

RTCP

PIM

IGMPICMP

MPLS

LDP

HIP

LISP

LLDP

BFD

4
1

02.11.2020
Additional Chapters of Computer

Networks Antonenko V.A. 41

A Heap of Header Formats?

4
2

02.11.2020
Additional Chapters of Computer

Networks Antonenko V.A. 42

TCP/IP Header Formats in Lego

4
3

02.11.2020
Additional Chapters of Computer

Networks Antonenko V.A. 43

A Big Bunch of Boxes?

Router Switch

Firewall
NAT

Load
balancer

DHCP
server

DNS
server

Bridge

Hub

Repeater

Base
station

ProxyWAN
accelerator

Gateway
Intrusion
Detection
System

Packet
shaper

Route
Reflector

Label
Switched
Router Scrubber

Packet
sniffer

Deep
Packet
Inspection

4
4

02.11.2020
Additional Chapters of Computer

Networks Antonenko V.A. 44

An Application Domain?

02.11.2020
Additional Chapters of Computer

Networks Antonenko V.A. 45

A place to apply theory?
• Algorithms and data structures

• Control theory

• Queuing theory

• Optimization theory

• Game theory and mechanism design

• Formal methods

• Information theory

• Cryptography

• Programming languages

• Graph theory02.11.2020
Additional Chapters of Computer

Networks Antonenko V.A. 46

A place to build systems?

• Distributed systems
• Operating systems
• Computer architecture
• Software engineering
• …

02.11.2020
Additional Chapters of Computer

Networks Antonenko V.A. 47

IMHO, ALL OF MENTION
POINTS

02.11.2020
Additional Chapters of Computer

Networks Antonenko V.A. 48

02.11.2020
Additional Chapters of Computer

Networks Antonenko V.A. 49

What Is Mininet?

02.11.2020
Additional Chapters of Computer

Networks Antonenko V.A. 50

What Is Mininet?
• ISOLATED HOSTS

• A group of user-level processes moved into a
network namespace that provide exclusive
ownership of interfaces, ports and routing
tables.

• EMULATED LINKS
• Linux Traffic Control (tc) enforces the data rate

of each link to shape traffic to a configured
rate. Each emulated host has its own virtual
Ethernet interface(s).

• EMULATED SWITCHES
• The default Linux Bridge or the Open vSwitch

running in kernel mode is used to switch
packets across interfaces. Switches and
routers can run in the kernel or in the user
space.

Mininet Installation

• Download the Mininet VM image.
• Download and install a virtualization system. We

recommend VirtualBox (free, GPL) because it
is free and works on OS X, Windows, and Linux
(though it’s slightly slower than VMware in our tests.)
You can also use Qemu for any platform,
VMware Workstation for Windows or Linux,
VMware Fusion for Mac, or KVM (free, GPL) for Linux.

• Run through the VM Setup Notes to log in to the VM
and customize it as desired.

…
• Or just do: sudo apt-get mininet

02.11.2020
Additional Chapters of Computer

Networks Antonenko V.A. 51

https://github.com/mininet/mininet/wiki/Mininet-VM-Images
http://www.virtualbox.org/wiki/Downloads
http://qemu.org/
http://www.vmware.com/products/workstation/
http://www.vmware.com/products/fusion
http://www.linux-kvm.org/
http://mininet.org/vm-setup-notes

What Mininet Used For?
• Provides a simple and inexpensive network testbed for

developing OpenFlow applications
• Enables multiple concurrent developers to work

independently on the same topology
• Supports system-level regression tests, which are repeatable

and easily packaged
• Enables complex topology testing, without the need to wire up

a physical network
• Includes a CLI that is topology-aware and OpenFlow-aware, for

debugging or running network-wide tests
• Supports arbitrary custom topologies, and includes a basic set

of parametrized topologies is usable out of the box without
programming, but also Provides a straightforward and
extensible Python API for network creation and experimentation

02.11.2020
Additional Chapters of Computer

Networks Antonenko V.A. 52

Why It Is Better?
• Compared to full system virtualization based approaches, Mininet:

– Boots faster: seconds instead of minutes
– Scales larger: hundreds of hosts and switches vs. single digits
– Provides more bandwidth: typically 2Gbps total bandwidth on modest

hardware
– Installs easily: a prepackaged VM is available that runs on VMware or

VirtualBox for Mac/Win/Linux with OpenFlow v1.0 tools already installed.

• Compared to hardware testbeds, Mininet
– is inexpensive and always available (even before conference deadlines)
– is quickly reconfigurable and restartable

• Compared to simulators, Mininet
– runs real, unmodified code including application code, OS kernel code, and

control plane code (both OpenFlow controller code and Open vSwitch code)
– easily connects to real networks
– offers interactive performance - you can type at it

02.11.2020
Additional Chapters of Computer

Networks Antonenko V.A. 53

Limitation of Mininet

• Mininet-based networks cannot
(currently) exceed the CPU or
bandwidth available on a single
server.

• Mininet cannot (currently) run non-
Linux-compatible OpenFlow switches
or applications; this has not been a
major issue in practice.

02.11.2020
Additional Chapters of Computer

Networks Antonenko V.A. 54

• Start a minimal topology and enter the CLI:
$ sudo mn

• The default topology is the minimal topology, which
includes one OpenFlow kernel switch connected to two
hosts, plus the OpenFlow reference controller. This
topology could also be specified on the command line
with --topo=minimal. Other topologies are also available
out of the box; see the --topo section in the output of mn
-h.

• All four entities (2 host processes, 1 switch process, 1
basic controller) are now running in the VM. The
controller can be outside the VM, and instructions for that
are at the bottom.

02.11.2020
Additional Chapters of Computer

Networks Antonenko V.A. 55

• Display Mininet CLI commands:
mininet> help

• Display nodes:
mininet> nodes

• Display links:
mininet> net

• Dump information about all nodes:
mininet> dump

02.11.2020
Additional Chapters of Computer

Networks Antonenko V.A. 56

• If the first string typed into the Mininet CLI is a host, switch or
controller name, the command is executed on that node.

• Run a command on a host process:

mininet> h1 ifconfig -a
• You should see the host’s h1-eth0 and loopback (lo) interfaces.

Note that this interface (h1-eth0) is not seen by the primary Linux
system when ifconfig is run, because it is specific to the network
namespace of the host process.

• In contrast, the switch by default runs in the root network
namespace, so running a command on the “switch” is the same
as running it from a regular terminal:

mininet> s1 ifconfig -a
• This will show the switch interfaces, plus the VM’s connection out

(eth0).

02.11.2020
Additional Chapters of Computer

Networks Antonenko V.A. 57

• Now, verify that you can ping from host 0 to
host 1:

mininet> h1 ping -c 1 h2

• If a string appears later in the command with
a node name, that node name is replaced by
its IP address; this happened for h2.

• An easier way to run this test is to use the
Mininet CLI built-in pingall command, which
does an all-pairs ping:

mininet> pingall

02.11.2020
Additional Chapters of Computer

Networks Antonenko V.A. 58

• Exit the CLI:
mininet> exit

• If Mininet crashes for some reason,
clean it up:

$ sudo mn -c

02.11.2020
Additional Chapters of Computer

Networks Antonenko V.A. 59

• Run a regression test:
$ sudo mn --test pingpair

• This command created a minimal topology, started
up the OpenFlow reference controller, ran an all-
pairs-ping test, and tore down both the topology
and the controller.

• Another useful test is iperf (give it about 10
seconds to complete):

$ sudo mn --test iperf

• This command created the same Mininet, ran an
iperf server on one host, ran an iperf client on the
second host, and parsed the bandwidth achieved.

02.11.2020
Additional Chapters of Computer

Networks Antonenko V.A. 60

• The default topology is a single switch connected
to two hosts. You could change this to a different
topo with --topo, and pass parameters for that
topology’s creation. For example, to verify all-pairs
ping connectivity with one switch and three hosts:

$ sudo mn --test pingall --topo single,3

• Another example, with a linear topology (where
each switch has one host, and all switches connect
in a line):

$ sudo mn --test pingall --topo linear,4

• Parametrized topologies are one of Mininet’s most
useful and powerful features.

02.11.2020
Additional Chapters of Computer

Networks Antonenko V.A. 61

• Mininet 2.0 allows you to set link parameters,
and these can even be set automatially from the
command line:

$ sudo mn --link tc,bw=10,delay=10ms |
mininet> iperf |

... |
mininet> h1 ping -c10 h2 |

• If the delay for each link is 10 ms, the round trip
time (RTT) should be about 40 ms, since the
ICMP request traverses two links (one to the
switch, one to the destination) and the ICMP
reply traverses two links coming back.

02.11.2020
Additional Chapters of Computer

Networks Antonenko V.A. 62

• Custom topologies can be easily defined as
well, using a simple Python API, and an
example is provided in custom/topo-2sw-
2host.py. This example connects two
switches directly, with a single host off each
switch.

• When a custom mininet file is provided, it
can add new topologies, switch types, and
tests to the command-line. For example:

$ sudo mn --custom ~/mininet/custom/topo-2sw-2host.py --
topo mytopo --test pingall

02.11.2020
Additional Chapters of Computer

Networks Antonenko V.A. 63

02.11.2020
Additional Chapters of Computer

Networks Antonenko V.A. 64

• The --mac option is super-useful, and sets the host
MAC and IP addrs to small, unique, easy-to-read
IDs.

• Before:

• After:

02.11.2020
Additional Chapters of Computer

Networks Antonenko V.A. 65

• Other switch types can be used. For
example, to run the user-space switch:

$ sudo mn --switch user --test iperf

• Another example switch type is Open
vSwitch (OVS), which comes preinstalled
on the Mininet VM. The iperf-reported
TCP bandwidth should be similar to the
OpenFlow kernel module, and possibly
faster:

$ sudo mn --switch ovsk --test iperf

02.11.2020
Additional Chapters of Computer

Networks Antonenko V.A. 66

• If the first phrase on the Mininiet command line is py, then that command is
executed with Python. This might be useful for extending Mininet, as well as
probing its inner workings. Each host, switch, and controller has an associated
Node object.

• At the Mininet CLI, run:

mininet> py 'hello ' + 'world’
• Print the accessible local variables:

mininet> py locals()
• Next, see the methods and properties available for a node, using the dir() function:

mininet> py dir(s1)
• You can read the on-line documentation for methods available on a node by using

the help() function:

mininet> py help(h1)
• (Press "q" to quit reading the documentation.)
• You can also evaluate methods of variables:

mininet> py h1.IP()

02.11.2020
Additional Chapters of Computer

Networks Antonenko V.A. 67

• For fault tolerance testing, it can be
helpful to bring links up and down.

• To disable both halves of a virtual
ethernet pair:

mininet> link s1 h1 down

• You should see an OpenFlow Port
Status Change notification get
generated. To bring the link back up:

mininet> link s1 h1 up

02.11.2020
Additional Chapters of Computer

Networks Antonenko V.A. 68

• When you start a Mininet network, each switch can be connected
to a remote controller - which could be in the VM, outside the VM
and on your local machine, or anywhere in the world.

• If you want to try this, fill in the host IP and/or listening port:
$ sudo mn --controller=remote,ip=[controller IP],port=[controller

listening port]
• For example, to run POX’s sample learning switch, you could do

something like
$ cd ~/pox |

$./pox.py forwarding.l2_learning |
• in one window, and in another window, start up Mininet to

connect to the “remote” controller (which is actually running
locally, but outside of Mininet’s control):

$ sudo mn --controller=remote,ip=127.0.0.1,port=6633

02.11.2020
Additional Chapters of Computer

Networks Antonenko V.A. 69

Big Network Prototyping

02.11.2020
Additional Chapters of Computer

Networks Antonenko V.A. 70

Hosts

Servers

Network Devices
7102.11.2020

Additional Chapters of Computer
Networks Antonenko V.A.

Hosts

Servers

Network Devices
7202.11.2020

Additional Chapters of Computer
Networks Antonenko V.A.

HH

HH
HH

HH HH

HH

HH

HH

HH HH

SrSr

SrSr

SS

SS

SS

7302.11.2020
Additional Chapters of Computer

Networks Antonenko V.A.

HH

HH

HH
HH HH

HH

HH

SS

HH

HH

HH

HH

HH

HH

HH

HH

HH

HH

HH

HH

HH

SS

SS

SS

HH

HH

HH

HH

HH

HH

HHHH
HH

HH

HH

HH

HH

HH

HH

SrSr

SrSr

SS

SS SS

SS

SS

SS

SSSS

7402.11.2020
Additional Chapters of Computer

Networks Antonenko V.A.

Архитектура NPS

Mininet cluster nodeMininet cluster node

h1
10.0.0

.2

h1
10.0.0

.2

h2
10.0.0

.3

h2
10.0.0

.3

h3
10.0.0

.4

h3
10.0.0

.4

s1 : OpenFlow Switch
(OpenVswitch)

s1 : OpenFlow Switch
(OpenVswitch)

s1-eth0 s1-eth1 s1-eth2

h1-eth0 h2-eth0 h3-eth0

eth0
s1-eth3

7502.11.2020
Additional Chapters of Computer

Networks Antonenko V.A.

Архитектура NPS

Mininet cluster nodeMininet cluster node

h1
10.0.0

.2

h1
10.0.0

.2

h2
10.0.0

.3

h2
10.0.0

.3

h3
10.0.0

.4

h3
10.0.0

.4

s1 : OpenFlow Switch
(OpenVswitch)

s1 : OpenFlow Switch
(OpenVswitch)

s1-eth0 s1-eth1 s1-eth2

h1-eth0 h2-eth0 h3-eth0

eth0
s1-eth3

7602.11.2020
Additional Chapters of Computer

Networks Antonenko V.A.

Mininet cluster
node

Mininet cluster
node

Mininet cluster
node

Mininet cluster
node

Mininet cluster
node

Mininet cluster
node

Архитектура NPS

Mininet cluster
node

Mininet cluster
node

Management Console

Mininet cluster
node

Mininet cluster
node

Mininet cluster
node

Mininet cluster
node

SSH SSH SSH SSH SSH SSH

Controller
(SDN)

Controller
(SDN)

7702.11.2020
Additional Chapters of Computer

Networks Antonenko V.A.

78

Thank You for Attention!

02.11.2020
Additional Chapters of Computer

Networks Antonenko V.A.

