
Abstract — This paper discusses the construction of an infra-
structure for protecting against network intrusions based on SDN
technologies. Protection technologies were developed earlier
using rank distributions, and they allow for the finding of thresh-
old values for the basic network variables, compile lists of regular
users of the resource, and prepare databases of IP addresses from
which intrusions are made in advance. It is proposed that all these
methods can be improved by applying SDN technology, and an
SDN infrastructure has been deployed for experimental testing
of software modules being developed.

Keywords — protection based on SDN technologies, network
monitoring systems for intrusion detection, rank distribution to
detect attacks

I. Introduction

A major danger on the Internet is the actions of various
kinds of intruders. They use the global network not only
as a tool to commit unlawful actions but also to hamper
the normal operation of core network applications. Types
of network attacks are constantly being improved upon,
and often the actions of intruders are well coordinated [1].

To counteract coordinated attacks, an equally coor-
dinated system of intrusion protection is required. The
whole issue revolves around how coordination takes place.
More recently, network operating systems that were in-
stalled on network routers, such as Cisco IOS, could not
offer enough tools to coordinate efforts to prevent network
intrusions. Therefore, confrontation with modern DDoS
attacks, aimed at overflowing external channels for host-
ing services, was difficult.

The emergence of SDN technologies [2], in which the
control plane and the data plane are separated, makes it
easy to coordinate protection actions for a whole group
of network devices. SDN technologies allow for a single
policy for traffic management and the formulation of
uniform rules, as well as the introduction of unified per-
missive and prohibitive lists of IP addresses.

Some types of attacks require you to impose restric-
tions on traffic on routers that are located two levels higher
than the attacked hosting. Such incidents include the most
dangerous type of DDoS attacks and attacks on the over-
flow of external communication channels. At the same
time, several routers can be managed by third-party pro-
viders that conduct an independent security policy, but
even here SDN technologies can come to the rescue.

As an example of such interactions, one can cite the
preparation of the Defense Information Systems Agency
(DISA) of the US Department of Defense (DoD) to
repel attacks with a power of several terabits per second
[3]. When creating a protective infrastructure against
terabit attacks, SDN/NDV technologies are supposed to
be used.

This article is about attempts to create a security in-
frastructure based on SDN technologies in Russia. The
field of interest of our group included the development
of network security systems. Our efforts made it possible
to achieve a number of results in several areas, such as:

•• Detecting attacking IP addresses by exceeding the
threshold values for the main network variables and
countering them.

•• Drawing up permissive lists of regular Internet service
users.

•• Using a honeypot server to compile databases of at-
tacking addresses and model attacks with the allocation
of a ranked by popularity list of threats.

All these studies were performed initially without the
use of SDN technologies, so data processing was quite a
difficult exercise and was carried out manually on the data
collected over several months. This article will discuss the
issues of how to modernize the hardware schemes of the
mentioned experiments and the protection infrastructure,

Application of SDN Technologies to Protect
Against Network Intrusions

A. S. Salimov N. M. Dolgopolov

Crimean Federal University Samara University

Simferopol, Russia Samara, Russia

E-mail: ars.salimov@gmail.com E-mail: kamikadzni@mail.ru

A. M. Sukhov E. S. Sagatov

Samara University Samara University

Samara, Russia Samara, Russia

E-mail: sukhov@ssau.ru E-mail: sagatov@ya.ru

978-1-5386-9456-5/18/$31.00 ©2018 IEEE

including elements of SDN technologies. Our discussion
also includes the development of appropriate SDN mod-
ules.

II. Network monitoring systems
for intrusion detection

In this section, we will describe in detail the schemes
of experiments that can detect sources of network intru-
sions.

Let’s start with methods that allow for identifying the
beginning of DDoS (Distributed Denial of Service) at-
tacks [4, 5], as well as the network addresses from which
this attack is conducted. This method assumes that for
several network variables there is a limit value that is sig-
nificantly exceeded during the attack. This assumption is
based on the fact that during the attack there is a denial
of service due to the artificially created load on the net-
work resources, although in the normal state the attacked
service handles the flow of requests calmly. Therefore,
during an attack, the values of network variables must
exceed a certain barrier. Through a set of variables that
exceed this barrier, it can judge a particular type of attack.

In this section, it is necessary to discuss the rules for
calculating threshold values. Also, it is necessary to es-
tablish methods of measuring them in order to quickly
determine the moment of the beginning of the attack. The
idea of determining thresholds for the detection of anom-
alous network states was expressed long ago, since the
initial appearance of DoS attacks [6]. For the calculation
of threshold values, rank distributions are used when the
values of the network variable measured at the same time
are arranged in descending order.

In 1994, Steve Glassman [7] first described the process
of Internet traffic caching using rank distribution. In the
future, the field of application of rank distributions for
the analysis of network processes has expanded. At pres-
ent, there are several good reviews [8, 9] on the use of
rank distributions for the description of network processes.

As a rule, Internet processes at a fixed time are de-
scribed by a Zipf-like distribution which states that

	 p
p

i
i = 1

a � (1)

here p1 is the largest value of the investigated variable, i is
the sequence number in the ranked list (list in descending
order), and a is the exponent characterizing the rate of
decrease.

To detect the moment of the beginning of the attack,
the value k should be used

	 k
p

ptr

= 1 .� (2)

Now the question is how to determine the threshold
value ptr, which stands in the denominator of the fraction
from equation (2).

For this it is necessary to construct the dependence of
the largest value of the investigated network variable on
time, p t1(). First, this largest value is calculated at the
current time, and then its time dependence is constructed.
To calculate the threshold value, we need to collect and
process statistics for a significant period. This period
should be at least a week to account for all temporary
fluctuations. Then the maximum value of the function
p t1() on the investigated interval should be taken as the
desired threshold value. The threshold value ptr should
not be exceeded during normal network operation
(())1p t ptr≤ . This value is used to calculate the coeffi-
cient k in equation (2).

The next question is to determine the set of network
variables for which threshold values are to be calculated.
The choice of network variables depends on the type of
DDoS attack. If the attack is aimed at breaking an Inter-
net service (for example, failure in the functioning of a
web server), then we should analyze the number of re-
quests to the attacked resource. If the attack targets the
overflow of incoming channels, then it is required to col-
lect data about all types of incoming traffic (TCP, UDP,
ICMP), as well as information on the number of active
streams.

Since the attack type is not known in advance, thresh-
old values must be calculated for a significant number of
variables. Such a set of variables should include:

•• the total number of active flows on the border (BGP)
router;

•• the number of active flows that generate a single ex-
ternal IP address;

•• incoming traffic that generates a single external IP
address, separately for each type of traffic (TCP, UDP,
ICMP);

•• the number of requests generated by a single external
IP address, separately for each type of service (HTTP,
FTP, mail, proxy, ssh, samba, MySQL, etc.)

After threshold values ptr for the most important net-
work variables are found, it is necessary to regularly cal-
culate the corresponding values of the coefficients given
by equation (2). If the value of this coefficient is much
greater than one, we should speak about the anomalous
state of the network. The fact that all network variables
are calculated for traffic that generates a single IP address
allows us to determine the sources of attack.

As an illustration, the Netflow data from the external
routing server of the Samara State Aerospace University
is used. The obtained results are shown graphically in
Fig. 1.

A typical graph of the distribution of the number of
active flows generated by a single IP address is shown in
Fig. 1. The number of active flows and the ordinal num-
ber of the address in the ranked list are plotted along the
axes in a logarithmic scale. The points on the graph lie

on a straight line, which indicates that the given distribu-
tion obeys Zipf’s law from Equation (1).

To find the threshold for the number of active flows
generated by a single IP address, the weekly traffic was
analyzed and the corresponding graph is shown in Fig. 2.

The graph in Fig. 2 shows that the maximum number
of flows from one IP address during normal network op-
eration does not exceed 600 in 5 minutes for the server
under investigation.

Thus, based on Zipf’s law and the flow data from the
routers, we formulated and illustrated the rule for deter-
mining the clipping threshold for the number of flows for
suspicious IP addresses. The clipping level will be the
upper limit among the maximum number of flows gener-
ated by a single IP address.

When repelling a DDoS attack, we can use different
defense strategies, such as searching for classification
characteristics of IP‑addresses from which an attack oc-
curs and restricting access to the protected service [10].
However, at the beginning of the attack, it takes some time
to recognize the characteristics, formulate qualification
characteristics for unwanted queries, and identify the
attacking IP addresses. The duration of these operations
can reach several hours [11], during which the service
may be unavailable. At this time, we can only process

requests from a regular audience, that is, a custom kernel.
Knowledge of the statistical characteristics of the behav-
ior of new users will facilitate the search for types of at-
tacking requests and the formation of lists of attacking
IP‑addresses for subsequent blocking.

To identify the user’s kernel of the Internet service
[12], we can use any access logs to which visitors’ IP ad-
dresses are entered. In this paper, we investigated the web
server of the popular Internet portal, so the log files of the
Nginx web server running on the Debian GNU/Linux
operating system are used as the source of the IP ad-
dresses. IP‑addresses of visitors are entered in the database
and are further considered to belong to the user’s kernel.
After the kernel is formed, users whose IP addresses are
not included in the database are considered new.

Figure 3 shows the time dependence of the share of
new IP addresses, h, in the daily audience. The proportion
h is the ratio of the number of IP addresses of new visitors
to their total number for each day.

It can be seen from the graph that, in four to six weeks
from the beginning of the statistics collection, the percent-
age of new IP addresses from which site visits occur is
stabilized in the range of 30 to 40%.

In order to understand the structure of the audience,
it is necessary to build ranked lists of user IP addresses [8].
The ordering frequency is chosen to be the frequency of
visits R from each address, and the user IP addresses are
arranged in decreasing order of R. As the rank of n, the
sequence number of the IP address in the descending list
will be used, and then the function R n() will be the desired
rank distribution.

The Nginx web server logs allow us to obtain the Zipf-
like distribution shown in Fig. 4.

The study of the service audience, conducted above,
allows for forming a list of regular visitors. The base of such
a list is the audience for some significant period (from two
weeks to several months). First of all, from this list it should
delete all random addresses. These are the addresses from
which they visited the site only for one day.

Fig. 1. The number of active flows per IP‑address in descending
order

Fig. 2. Dynamics of changes in the number of active flows Fig. 3. The graph of the percentage of new IP addresses

This list will not be complete, since some of the IP
addresses are selected from blocks of dynamic Internet
provider addresses. To develop the list of IP addresses,
a special script was developed. It should be noted that
the developed script for expanding the user database
must be run before the previously described script for
removing suspicious IP‑addresses. The addresses of
visitors from subnets belonging to the user’s kernel are
not considered accidental and are not deleted during
cleaning.

The application of the developed script to supplement
the database allowed us to increase the number of ad-
dresses included in it by 44%. After the core expansion,
the share of new addresses was in the range of 25 to 35%.

To perform the prohibition list, a slightly different
approach was used based on the concept of a honeypot.
A honeypot is a server with a real IP address on which
software is installed that implements a number of popular
Internet services (Table 1). At the same time, the network
data of these services and server addresses are not pub-
lished anywhere, so that ordinary real users do not have
the opportunity to learn about them. Thus, they can only
be found via robotic search.

The task of the honeypot is to attract criminals, record
their actions and then analyze them. Therefore, requests
to such a server, especially multiple ones, can be classified
as abnormal network activity.

The idea of a honeypot server was first conceived in
1990 [13], while the mass use of such technologies began
in the early 2000s [14]. During this time, as the technol-
ogy progressed there appeared specially developed soft-
ware for these purposes, both open [15] and commercial.
In our work, we will use software with an open license for
all components of the honeypot server.

In order to improve the accuracy of predictions, it is
necessary to install several such servers in different parts
of the world. Further data from these servers will be syn-
chronized. We selected three points within Russia: in
Samara, Rostov-on-Don and Crimea, and also one point
in the USA. The last point was chosen to compare the
situation in Russia and the United States.

In addition to coverage, our research was different and
conducted over a long enough time to collect statistics,
which was more than a year. In the analysis of regularities,
methods based on rank distributions were used.

The choice of applications installed on the honeypot
server-was determined by their popularity with users, as
well as the ability to organize the collection of call statis-
tics in the simplest way.

All honeypot servers had the operating system GNU
Debian/Linux installed. A list of protocols, services, as-
sociated software, types of attacks and registration files
with their location are shown in Table 1.

When configuring network protocols and services,
standard ports were used.

It should be noted that the analysis of the log files listed
in Table 1 is not enough to structure the threats, since
these files contain only the response of the system. In
order to record the request itself, we need to install a

Fig. 4. Rank distribution of site visits

Table 1. The main parameters of the honeypot server

№ Network protocol or service Installed software Possible types of attack Path to the data file

1 VoIP, SIP Asterisk Selecting a password, incoming call to
search for an existing number

/var/log/asterisk/messages

2 HTTP, Web service Apache, Nginx Trying to find the admin interface of
phpMyAdmin, WordPress, Joomla;

other queries with vulnerability search

/var/log/nginx/*

3 POP3, IMAP, e-mail Dovecot, Exim Choose a password /var/log/mail.log

4 MySQL, database management
system

MySQL Choose a password /var/log/mysql/*

5 SMB, universal access service to
network resources

Samba Choose a password /var/log/samba/*

6 Web-proxy, proxy server with res-
ervation option

Squid Choose a password /var/log/squid3/access.log

7 SSH, secure remote management OpenSSH Choose a password /var/log/auth.log

8 FTP, File Transfer Protocol vsftpd Choose a password /var/log/vsftpd.log

9 DNS, Domain Name System Bind9 DNS Vulnerabilities /var/log/named.log

10 Firewall iptables Port scanning /var/log/iptables

program to record the incoming traffic on the network
interface of the honeypot server. In the described case,
the program WireShark was installed, which permitted
analyzing incoming requests and classifying them accord-
ing to the types of vulnerabilities. Subsequently, this in-
formation will be used to compile an audit plan for the
security of information systems.

As a result of the analysis of log files, we have compiled
a list of suspicious IP‑addresses (black list). The criteria
for entering this list include the following two assump-
tions:

1)  A simultaneous hit of the IP‑address in the log files
on 2 or more honeypot servers.

2)  Receiving at least 3 requests from each suspicious
IP‑address.

III.  Protection against network attacks

Any network attack is important to detect in a timely
manner in order to take measures to neutralize it as
quickly as possible. The network status data is received
from the network devices periodically, depending on the
settings set. At the same time, a balance is needed between
the frequency of statistic collection and the time needed
to process it. Therefore, the frequency of the data request
is one time per minute or five minutes.

It should be noted that NetFlow-statistics contain
information about already completed flows. Because the
flow is considered active for a certain time after its com-
pletion, such completed flows also need to be considered
active. A popular Internet portal has been moved here.
Schematic diagram of the network infrastructure is shown
in Fig. 5.

This infrastructure consisted of the following elements:

•• A NetFlow sensor installed on the border router.

•• A special script based on NetFlow, designed to isolate
attacking IP addresses.

•• A special script that determines the beginning of the
attack on a sharp increase in the number of active flows.

•• An additional Cisco 2811 router in front of the server
being attacked, with stop-lists installed on it.

•• A Switch 3Com 4500 for duplicating network traffic
and its subsequent saving.

•• A specially formed list of regular visitors, which was
activated when the attack began to limit visitors to the
site.

The allocation of the device to duplicate traffic was
due to the fact that it is necessary to collect all traffic dur-
ing the attack for further analysis. When entering com-
mercial operation, access lists should be downloaded from
an Internet provider of a higher level.

Before the tests in the conditions of a real attack, a
complex laboratory test was conducted involving 10 at-
tacking computers. They were located both in the network
of the enterprise and outside it.

The attack on the number of requests to the web server
was performed using an Apache HTTP server benchmark-
ing tool [16], a Low Orbit Ion Cannon [17], and BoNeSi
[18]. The UDP flood attack was carried out with the help
of the Low Orbit Ion Cannon and BoNeSi.

None of the attacks disrupted the hardware, and the
web server responded to user requests. It should be noted
that the tests were carried out on a commercial system
that was not a laboratory bench. Therefore, it was impos-

Fig. 5. Network infrastructure for research

sible to fully emulate a large botnet with the real partici-
pation of just a few attacking computers.

Lab tests cannot replace the experience gained from
a real attack, so the authors anonymously requested a
combined DDoS attack on the web server described above.
Preliminary statistics of the use of this server were col-
lected within five months.

The real experience of repelling the DDoS attack
radically changed the authors’ opinions about the type
and features of the attack. Before the attack, it was
planned to remotely monitor the equipment, but the first
minutes of the DDoS attack showed that it was impos-
sible to do this via the attacked communication channel.
The beginning of the DDoS attack was accompanied by
a sharp increase (more than a hundred times) in the num-
ber of active flows, which was recorded in time by scripts
of observation. Then, during the first minutes of the
DDoS attack, external communication channels over-
flowed, and the web server became unavailable from the
external network. All other services and servers located in
this local network also became inaccessible, and remote
management was lost despite three external communica-
tion channels. Therefore, we had to switch to management
from the internal network. Overflow of one of the external
channels is demonstrated in the graph shown in Fig. 6.

The solid line indicates the maximum available band-
width of the channel to the service provider. During the
entire attack, it was significantly exceeded.

The failure of communication channels occurred due
to overflow with incoming UDP traffic (DDoS‑attack
type “UDP flood”), and the number of servers generating
this traffic was relatively small (only reaching around 200).
About half of these servers practically did not change the
source and destination ports, while the other half did it
regularly.

During the attack, two types of UDP packets were
used, the first being the minimum-length. These packets
contain one character which is repeated in all packets.
The second type is UDP‑packets of maximum length.
These packages are filled with random data, and all are

marked as fragments for their subsequent integration by
the server into one large package.

A small number of attacking servers were compensated
for by the total speed of UDP streams. From some ad-
dresses, this speed reached 60 Mbps. This speed could be
increased, but our provider imposed restrictions on the
external channel. It was found that most of the attacking
servers were located in the US, although correspondence
with the botnet management was conducted in Russian.
According to the management of the botnet, its attacking
power was only used by 2%. In this case, only the web
hosting, with its external channels of the order of 1 Gbps,
is affected. The channels of our external provider with a
total capacity of at least 100 Gbps are not affected.

Unfortunately, the hosting did not have an agreement
to limit incoming traffic with providers, and the simplest
ban of UDP traffic to the attacked server would immedi-
ately solve most of the problems.

TCP requests (DDoS‑attack type “TCP flood”) also
participated in the DDoS‑attack. The number of attack-
ing servers was about 1500. During the attack, TCP re-
quests of two types were used. The first was file requests
from the web server, simulating user actions. The second
type was represented by a lot of SYN/ACK‑packages of
the minimum size; apparently, it is a “TCP SYN flood”
DDoS‑attack. But these attacks did not inflict significant
damage in view of channel overflow and activation of
query restriction algorithms on the web server.

Analysis of the attack at the flow level showed that the
beginning was accompanied by a sharp increase in the
number of active flows in the external channel of web
hosting. The number of completed flows, as mentioned
above, has increased by more than two orders. This growth
was immediately fixed by the monitoring system. Indi-
vidual attacking IP addresses could easily be determined
by the number of generated flows, both active and com-
pleted. Figure 7 shows the ranked list of addresses by the
number of generated flows. The top graph describes the
moment of attack, and the lower graph shows a typical
distribution in the absence of an attack.

Fig. 6. The schedule for loading an external channel during a DDoS attack

Comparison of the graphs presented in Fig. 7 allows
us to formulate a criterion for determining whether an IP
address belongs to a botnet. All addresses located higher
than the most popular server in the normal network state
and not belonging to the user’s kernel should be assigned
to the botnet [19]. For full detection of attacking ad-
dresses, it is necessary to build ranked distributions for
incoming UDP, ICMP and TCP traffic generated from a
single IP address at the time of the attack. The cut-off
threshold must be defined for each service and type of
traffic in advance, and periodically (at least every six
months) these values must be recalculated.

The use of two independent criteria for the number of
flows and the amount of incoming traffic (UDP, ICMP
or TCP) allows us to quickly (within 5 minutes) make a
list of attacking addresses for blocking on filtering equip-
ment.

IV. Schematic diagram
of the SDN security infrastructure

In this section, the basic diagrams of software and
hardware complexes based on SDN technologies will be
presented. In the previous sections, we summarized our
experience in identifying network intrusions and organiz-
ing security. Unfortunately, it turned out that the standard
protection schemes do not work for the most terrible type
of attacks on the overflow of external communication
channels. To protect against this type of attack, we need
to limit traffic on routers located one or two levels above
the protected resource. In other words, these restrictions
should be introduced at the provider’s provider.

That is, the zone controller must collect and analyze
information from the local switch. Based on this informa-
tion, the initial data on the protected network should be
collected and the main classification characteristics of
network intrusions should be identified on their basis.
These classification characteristics, in the form of thresh-
old values for the main network variables and lists of per-
sistent users of the service or databases of attacking ad-
dresses for a particular service must be transferred to

higher routers. As a rule, these routers enter the network
of the provider and are managed by its SDN controller,
as shown in Fig. 8.

The main problem with this scheme is the organization
of the interaction of SDN controllers. For security rea-
sons, the provider cannot allow its network devices to
receive control information from a third-party controller.
To effectively protect against attacks, we must set restric-
tions on routers located two levels higher than the pro-
tected server. At the same time, among the higher-level
network devices are routers of third-party providers.
Therefore, it is necessary to transfer the results of the
processed data between the controllers.

We had a problem in selecting equipment that sup-
ported the SDN protocols. At first we tried to buy the
switch at the lowest price and settled on the Huawei
S5720–12TP-LI-AC model. This model was offered by
Huawei representatives after long negotiations. Together
with the equipment, a certificate of compliance from the
Open Flow Foundation from December 2016 on the sup-
port of OpenFlow 1.3 specifications was presented. Un-
fortunately, this switch did not support this technology,
and our numerous calls to the support service did not help.

Therefore, the question arose about the urgent pur-
chase of equipment for testing. Therefore, as an SDN
switch, we purchased a Zodiac FX board, and as the SDN
controller we chose Floodlight. However, this was a tem-
porary solution; a few months later we were able to pur-
chase the HP Aruba 2930F 4SPF switch. All experiments
with writing modules were carried out on this equipment.

Fig. 7. The number of flows during the attack and in the normal
state

Fig. 8. Schematic diagram of the SDN security infrastructure

V. Development and testing
of SDN modules

In order to translate our protective mechanisms into
the SDN area, we needed to develop the appropriate
modules. Since this activity involves a large amount of
work, we identified the most important tasks and focused
our attention on these areas. This section describes our
experience in installing SDN equipment and the first steps
to implementing protective functions.

The first priority is the ability to block traffic from an
IP address. Blocking can be done by redirecting traffic to
a virtual interface. In our experiments, we used two types
of SDN equipment:

•• A Zodiac FX board.

•• A HP Aruba 2930F 4SPF Switch.

The Zodiac FX is a 4-port card that can be used as an
SDN switch. The project began in 2015 through Kick-
starter to provide an affordable platform for the develop-
ment of software-defined networks (SDN) to developers,
researchers and enthusiasts.

The Aruba 2930F switches are Layer 3 access switches.
The complete set of Layer 3 functions includes support
for the OSPF access layer, static and RIP routing, access
control lists, sFlow and IPv6 without the need to purchase
software licenses. Thus, it is potentially possible to write
modules to implement all the security mechanisms de-
scribed in Section II of this paper. For this experiment, a
SDN segment was built. The test environment includes
the Zodiac FX SDN switch and 4 hosts directly connected
to it via a network interface (one per port on the board).

Each host has its own role among them, and we dis-
tinguish the following (Fig. 9):

•• Web Server (192.168.0.1) — ​a host with the Appache
and nginx web servers running on it, as well as a de-
ployed site on the popular php Joomla framework.

•• Attacker One (192.168.0.2) and Attacker Two
(192.168.0.3) are malicious hosts. During the experi-
ment, malicious DDOS traffic is sent to their Web
servers from their addresses.

•• Controller (10.0.1.8) — ​the host on which the SDN
controller is deployed.

All hosts are running the Linux operating system
Ubuntu.

The schematic diagram for testing the HP Aruba
switch is different in that the SDN controller was Open-
DayLight (ODL). At the time of this writing, we learned
how to manage the network using a graphical interface
and manually block traffic from IP addresses.

VI. Conclusions and future plans

In this paper, we tried to describe the different types
of network protection infrastructure. The basis for detect-
ing intrusions is rank distributions. With their help, clas-
sification signs of network attacks were found for both the
network as a whole and for IP addresses that were sources
of attack.

We have described three types of network monitoring
systems. The first type analyzes the traffic generated by
external IP addresses. By examining the time dependence
of the largest value for a network variable, we can find the
threshold value for a given variable. This value will never
be exceeded during normal network operation. During
the attacks, the threshold value will be exceeded.

Fig. 9. The scheme of the experiment

The second monitoring system describes the algorithm
for compiling a list of users. It consists of those addresses
that form a regular service audience. After the attack
begins, this list is loaded and only members of this list are
allowed access to the protected resource.

Another method of preventive intrusion prevention is
implemented with the help of honeypot servers. These
servers are anonymously placed on the Internet and col-
lect data on all attempts to access them. This data is then
processed and classified. As a result, a list of attacking IP
addresses appears in the binding to services. A portrait of
the attack is also drawn up, which includes a ranked list
of threats. Based on this list, it is necessary to eliminate
possible vulnerabilities of information systems.

However, a full-fledged protective infrastructure is not
possible without a complex coordination of efforts with
providers. For such coordination, the use of SDN tech-
nologies is suggested. The article discusses the concept of
a protective mechanism based on SDN and the imple-
mentation of software modules, including the interaction
of controllers of different providers.

In the future, our goal is to introduce the elements of
SDN technologies into the protective mechanisms we
developed earlier. Attention will be paid to the model of
interaction between two controllers of different providers.
With this interaction, we can transfer data about attacking
addresses to top-level providers so that they can redirect
attacking traffic to virtual interfaces. This task must be
solved to successfully counter the attack aimed at over-
flowing the external channels of the protected resource.

VII. Acknowledgements

The work falls within the public tasks of the Ministry
of Education and Science of the Russian Federation
(2.974.2017/4.6) and was carried out with the support of
grant RFBR16–07–00218a.

References

1.	 M.-Y. Huang, R. J. Jasper, and T. M. Wicks, “A large scale dis-
tributed intrusion detection framework based on attack strategy
analysis,” Computer Networks, vol. 31, no. 23-24, pp. 2465–
2475, 1999.

2.	 B. Lantz, B. Heller, and N. McKeown, “A network in a laptop:
rapid prototyping for software-defined networks,” in Proceedings
of the 9th ACM SIGCOMM Workshop on Hot Topics in Net-
works. ACM, 2010, p. 19.

3.	 “Dod is gearing up for the ‘terabyte of death’,” MeriTalk, 2018.
[Online]. Available: https://www.meritalk.com/articles/dod-is-
gearingup-for-the-terabyte-of-death/

4.	 J. Mirkovic and P. Reiher, “A taxonomy of ddos attack and ddos
defense mechanisms,” ACM SIGCOMM Computer Commu-
nication Review, vol. 34, no. 2, pp. 39–53, 2004.

5.	 C. Douligeris and A. Mitrokotsa, “Ddos attacks and defense
mechanisms: classification and state-of-the-art,” Computer
Networks, vol. 44, no. 5, pp. 643–666, 2004.

6.	 J. Jiang and S. Papavassiliou, “Detecting network attacks in the
internet via statistical network trac normality prediction,” Jour-
nal of Network and Systems Management, vol. 12, no. 1, pp. 51–
72, 2004.

7.	 S. Glassman, “A caching relay for the world wide web,” Computer
Networks and ISDN systems, vol. 27, no. 2, pp. 165–173, 1994.

8.	 S. A. Krashakov, A. B. Teslyuk, and L. N. Shchur, “On the uni-
versality of rank distributions of website popularity,” Computer
Networks, vol. 50, no. 11, pp. 1769–1780, 2006.

9.	 S. N. Dorogovtsev and J. F. Mendes, Evolution of networks: From
biological nets to the Internet and WWW. OUP Oxford, 2013.

10.	 J. Ma, L. K. Saul, S. Savage, and G. M. Voelker, “Beyond black-
lists: learning to detect malicious web sites from suspicious urls,”
in Proceedings of the 15th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining. ACM, 2009,
pp. 1245–1254.

11.	 J. Markoff, “Before the gunfire, cyberattacks,” New York Times,
vol. 12, pp. 27–28, 2008.

12.	 A. Sukhov, E. Sagatov, and A. Baskakov, “Analysis of internet
service user audiences for network security problems,” in Tele-
communication Technologies (ISTT), 2014 IEEE 2nd Interna-
tional Symposium on. IEEE, 2014, pp. 214–219.

13.	 C. Stoll, The cuckoo’s egg: tracking a spy through the maze of
computer espionage. Simon and Schuster, 2005.

14.	 L. Spitzner, “The honeynet project: Trapping the hackers,” IEEE
Security & Privacy, vol. 99, no. 2, pp. 15–23, 2003.

15.	 N. Provos, “Developments of the honeyd virtual honeypot,”
2005. [Online]. Available: http://honeyd.org

16.	 “ab – apache http server benchmarking tool – apache http server
version 2.2,” The Apache Software Foundation. [Online]. Avail-
able: http://httpd.apache.org/docs/2.2/programs/ab.html

17.	 “Loic — free security & utilities software downloads at source-
forge.net,” Dice Holdings, Inc. [Online]. Available: http://source-
forge.net/projects/loic/

18.	 M. Goldstein, “bonesi - bonesi - the ddos botnet simulator.”
[Online]. Available: https://code.google.com/p/bonesi/

19.	 A. Sukhov, E. Sagatov, and A. Baskakov, “Rank distribution for
determining the threshold values of network variables and the
analysis of ddos attacks,” Procedia Engineering, vol. 201,
pp. 417–427, 2017.

