Skoltech

Skolkovo Institute of Science and Technology

Lomonosov Moscow State University

SDN&NFV: Network Function Virtualization (NFV)

Advanced Computer Networks

Vasily Pashkov

pashkov@lvk.cs.msu.su

Part I: Introduction to Network Function Virtualization (NFV)

Advanced Computer Networks Vasily Pashkov

Problems of Telecom Operators

- Network traffic is growing
- More network hardware are required (CAPEX)
- Income is not growing
- Infrastructure consists of proprietary expensive network equipment.
- Static resource allocation.
- The implementation of a new network services takes up to 18 months.

Virtual Network Services

Terbail log kanad: Applance Virtual Orchestrated, automatic & remote install. Standard High Volume Servers Standard High Volume Storage Standard High Volume Ethernet Switches Network Virtualisation Approach

NFV Evolution Levels 4. Standard API's between Modules 3. Implementation in Virtual Machines 2. Network Function Modules 1. Software implementation of network

NFV Evolution

- Fast standard hardware ⇒ Software based Devices
 Routers, Firewalls, Broadband Remote Access Server (BRAS)
 ⇒ A.k.a. white box implementation
- 2. Function Modules (Both data plane and control plane) ⇒ DHCP (Dynamic Host control Protocol), NAT (Network Address Translation), Rate Limiting,

NFV Evolution

3. Virtual Machine implementation

 \Rightarrow Virtual appliances

⇒ All advantages of virtualization (quick provisioning, scalability, mobility, Reduced CapEx, Reduced OpEx, ...)

 Standard APIs: New ISG (Industry Specification Group) in ETSI (European Telecom Standards Institute) set up in <u>November 2012</u>

NFV Benefits

NFV is porting network functions to virtual machines:

- Simplify the deployment and upgrade of both software and hardware
- Cost reduction through the use of standard servers
- Grouping services

Examples

BRAS

- User Session Termination
- Interested in the benefit per user ~ 1Mbps
- The cost of existing solutions is approximately 10k for 10Gbps => One connection = \$1
- With NFV: one server can handle 50Gbps. Cost \$ 5k => One connection = \$ 0.1.
- CG-NAT
 - Address Translation
 - The high cost of existing solutions.
 - You save: \$ 16 -> \$ 4 -> \$ 2 per connection

Architecture (ETSI)

Figure 4: NFV reference architectural framework

Basic Concepts

- Network Function (NF): Functional building block with a well defined interfaces and well defined functional behavior
- Virtualized Network Function (VNF): Software implementation of NF that can be deployed in a virtualized infrastructure
- VNF Set: Connectivity between VNFs is not specified, e.g., residential gateways
- VNF Forwarding Graph: Service chain when network connectivity order is important, e.g., firewall, NAT, load balancer
- NFV Infrastructure (NFVI): Hardware and software required to deploy, mange and execute VNFs including computation, networking, and storage.

Network Forwarding Graph

An end-to-end service may include nested forwarding graphs

Basic Concepts (2)

- □ NFVI Point of Presence (PoP): Location of NFVI
- NFVI-PoP Network: Internal network
- Transport Network: Network connecting a PoP to other PoPs or external networks
- VNF Manager: VNF lifecycle management e.g., instantiation, update, scaling, query, monitoring, fault diagnosis, healing, termination
- Virtualized Infrastructure Manager: Management of computing, storage, network, software resources
- Network Service: A composition of network functions and defined by its functional and behavioral specification
- NFV Service: A network services using NFs with at least one VNF.

Basic Concepts (3)

- User Service: Services offered to end users/customers/subscribers.
- Deployment Behavior: NFVI resources that a VNF requires, e.g., Number of VMs, memory, disk, images, bandwidth, latency
- Operational Behavior: VNF instance topology and lifecycle operations, e.g., start, stop, pause, migration, ...
- VNF Descriptor: Deployment behavior + Operational behavior
- NFV Orchestrator: Automates the deployment, operation, management, coordination of VNFs and NFVI.
- VNF Forwarding Graph: Connection topology of various NFs of which at least one is a VNF

NFV Use Cases

□ Cloud:

- 1. NFV infrastructure as a service (NFVIaaS) like IaaS
- Virtual Network Functions (VNFs) as a service (VNFaaS) like SaaS
- 3. VNF forwarding graphs (Service Chains)
- 4. Virtual Network Platform as a Service (VNPaaS) like PaaS

□ Mobile:

- 5. Virtualization of the Mobile Core Network and IMS
- 6. Virtualization of Mobile Base Station

Data Center:

7. Virtualization of CDNs

□ Access/Residential:

- 8. Virtualization of the Home environment
- 9. Fixed Access NFV

Part II: Network Services Performance Issue

Network Services Performance Issue

Advanced Computer Networks Vasily Pashkov

Virtualization Platform Node

Bottlenecks

- Linux Networking Stack
 - 300Kpps
- Open vSwitch
- VM

Bottlenecks (OVS)

- Delay:
 - 11us
- Throughput:
 - 1 Mpps

Bottlenecks (KVM)

- Delay:
 - 300us
- Throughput:
 - 20Kpps (kernel OVS)
 - 200Kpps (userspace OVS)

Service Requirements

- Ability to bind VM to processor cores
- Scaling a service on a VM using existing processor cores
- The ability to start a service without a VM

Intel DPDK

DPDK = **D**ata **P**lane **D**evelopment **K**it

http://intel.com/go/dpdk/

- Intel DPDK is a set of libraries and drivers for fast packet processing on Intel platforms.
- Using large virtual pages (huge pages 2mb / 1gb).
- The placement of objects evenly across all channels of RAM.
- The address space of the card is accessible from userspace.
- Non-blocking queues for packet transmission.
- No interruptions in DPDK drivers active loop.
- Active use of SSE instructions for processing packets.
- Allocation of entire processor cores for tasks.

OPEN VSWITCH

An Open Virtual Switch

- Open vSwitch is a virtual software switch that provides connectivity between virtual machines and physical interfaces.
- Supports Ethernet switching with VLAN, SPAN, RSPAN, GRE, sFlow, Netflow.
- Supports OpenFlow 1.2, 1.3.

Open vSwitch Architecture

Intel DPDK vSwitch

https://github.com/01org/dpdk-ovs

Virtual Machines

Ways of work:

- VIRTIO
 - Transparent for virtual machine applications
 - Slow
- IVSHMEM
 - Highest speed
 - Requires sharpening a service under Intel vSwitch
- Vhost
 - average speed
 - Transparent for DPDK applications

кум	
ļ	Арр
VirtlO Eth	DPDK
Virtl	O DF DK

Results: Phy-to-Phy (Kpps)

Packets per second comparison

Results: Phy-to-VM (Kpps)

Packets per Second

Part III: NFV+SDN

Advanced Computer Networks Vasily Pashkov

SDN vs NFV

- Concept of NFV originated from SDN ⇒ First ETSI white paper showed overlapping Venn diagram ⇒ It was removed in the second version of the white paper
- NFV and SDN are complementary. One does not depend upon the other. You can do SDN only, NFV only, or SDN and NFV.
- Both have similar goals but approaches are very different.
- SDN needs new interfaces, control modules, applications. NFV requires moving network applications from dedicated hardware to virtual containers on commercial-off-the-shelf (COTS) hardware
- NFV is present. SDN is the future.
- Virtualization alone provides many of the required features
- Not much debate about NFV.

Main Goals

- Orchestration
 - +planning
- Service Chaining

– Acl->fw->dhcp->lb

NFV with the SDN Control Plane

Example

NTT DoCoMo – dynamic redistribution of resources

vCPE – Virtual Customer Premise Equipment

- The client has a small box, a weak CPU, tagging support (as a rule)
- Part of the services at the client, part in the cloud
 - NAT, FW, DHCP, ACL, QOS
 - Personal Area
- Configuration SDN, Dynamic Service Raising NFV

Conclusion

- The evolution of network services
 - Proprietary hardware
 - Software solutions on regular servers
 - Virtual solutions in the clouds
- Virtual machine is a unit of control
- Flexibility, scalability, performance

SiliconANGLE » NFV Will Cause A Paradigm Shift For Telcos | #HPdiscover

NFV will cause a paradigm shift for telcos | #HPdiscover

MIKE WHEATLEY | JUNE 11TH

Conclusion: SDN/NFV

- SDN software control and management of computer networks
- NFV launching of network services as programs in a virtual environment
- SDN+NFV independent and complementary technologies, strength in their simultaneous application: for example, orchestration of virtual services.

