
400 Gb/s Programmable Packet Parsing on a Single FPGA
Michael Attig and Gordon Brebner

Xilinx Labs
2100 Logic Drive

San Jose, CA 95124, USA
(+1) 408 559-7778

{mike.attig,gordon.brebner}@xilinx.com

ABSTRACT
Packet parsing is necessary at all points in the modern networking
infrastructure, to support packet classification and security
functions, as well as for protocol implementation. Increasingly
high line rates call for advanced hardware packet processing
solutions, while increasing rates of change call for high-level
programmability of these solutions. This paper presents an
approach for harnessing modern Field Programmable Gate Array
(FPGA) devices, which are a natural technology for implementing
the necessary high-speed programmable packet processing. The
paper introduces PP: a simple high-level language for describing
packet parsing algorithms in an implementation-independent
manner. It demonstrates that this language can be compiled to
give high-speed FPGA-based packet parsers that can be integrated
alongside other packet processing components to build network
nodes. Compilation involves generating virtual processing
architectures tailored to specific packet parsing requirements.
Scalability of these architectures allows parsing at line rates from
1 to 400 Gb/s as required in different network contexts. Run-time
programmability of these architectures allows dynamic updating
of parsing algorithms during operation in the field.
Implementation results show that programmable packet parsing of
600 million small packets per second can be supported on a single
Xilinx Virtex-7 FPGA device handling a 400 Gb/s line rate.

Categories and Subject Descriptors
C.2.6 [Computer-Communication Networks]: Internetworking—
Routers; C.1.3 [Other Architecture Styles]: Pipeline Processors;
D.3.4 [Programming Languages]: Processors – Parsers.

General Terms
Algorithms, Performance, Design, Languages.

Keywords
High-speed packet processing. FPGA-based parallel processing.
Domain-specific languages and compilers.

1. INTRODUCTION
As the Internet evolves, there is a growing need for non-trivial
packet parsing at all points in the networking infrastructure,
including the core carrier networks. Parsing is central to packet
classification in order to identify flows and implement quality of
service goals. Increasingly, it is also important to guide deeper
packet inspection in order to implement security policies. Of
course, packet parsing also continues to have a central role in the
implementation of end-to-end communication protocols. With
core networks moving to 100 Gb/s rates, and 400(±100) Gb/s

rates on the horizon, packet parsing at line rates poses a major
problem. A further complication is that parsing requirements can
change frequently as network traffic patterns evolve and protocols
are introduced, modified or replaced. This demands dynamic
flexibility within networking equipment.

A packet in transit consists of a stack of headers, a data payload,
and – optionally – a stack of trailers. At an end system, a packet
might begin with a stack of Ethernet, IP and TCP headers, for
example. In a core network, a packet might begin with a stack of
various Carrier Ethernet or MPLS headers, reflecting en-route
encapsulation, for example. The basic parsing problem can be
formulated as traversing a stack of headers in order to:

• Extract a key from the stack (e.g., a 16-bit packet type
field or a TCP/IP five-tuple); and/or

• Ascertain the position of the data payload (e.g. to enable
deeper packet inspection).

The traversal is guided by a parsing algorithm consisting of rules
for interpreting different types of header format. Note that,
without loss of generality, this approach can be extended to the
parsing of packet trailers, if required. The parsing process must
also smoothly handle failures of parsing, indicating unsupported
packet forms. The results of parsing feed into other network
processing components. These can include key lookup engines for
packet classification, and regular expression matching engines for
deep packet inspection.

This paper presents four main contributions which, taken together,
offer a flexible and scalable solution to the problems posed by
high performance packet parsing:

• Introducing a simple high-level domain-specific
language for directly describing packet header parsing
algorithms in an object-oriented style.

• Using the concurrent processing capabilities of modern
FPGA devices to enable the creation of tailored virtual
processing architectures that match the individual needs
of particular packet parsing algorithms. These provide
the required packet processing performance over a wide
range.

• Demonstrating a fast compiler that maps a parsing
algorithm description to a matching FPGA-based virtual
architecture. This removes existing barriers to ease of
use of FPGAs by hardware non-experts, and also
facilitates experimentation with the operational
characteristics of the implementation.

• Embodying programmability into the virtual
architecture, so that the parsing algorithm can be
updated dynamically during system operation.

2011 Seventh ACM/IEEE Symposium on Architectures for Networking and Communications Systems

978-0-7695-4521-9/11 $26.00 © 2011 IEEE

DOI 10.1109/ANCS.2011.12

12

1.1 The Packet Parsing (PP) Language
PP was specifically designed to provide a high-level way of
describing formats of packet headers and rules for parsing these
headers. Thus it is a very simple domain-specific language, not a
general-purpose programming language. PP is completely
protocol-agnostic, with no built-in restrictions on packet formats.
The aim is that the PP user can concentrate on packets, and
automatically obtain high-performance results. PP does not
involve specifying any details of the machinery used for parsing
rule application.
Conceptually, the PP parsing rules can be seen as embedded
within the following standard ‘outer loops’:

while true do {
 input packet;
 header := first header;
 while not done do {
 apply rules for header;
 header := next header;
 }
 output packet and results;
}

Thus, the PP description omits the standard control flow
descriptions that would be needed in a typical programming
language description. The lack of user-specified administrative
detail in PP makes it particularly appropriate for efficient
implementation on target technologies that support parallel
execution with streaming data flows.
Section 2 of the paper introduces the PP language.

1.2 FPGA Technology
Traditional approaches to providing the required flexibility in
packet parsing involve using general purpose servers as a basis for
network nodes. However, these may not be capable of providing
the required performance. To address this, the combination of
general purpose processors and specialized high-performance
network processors is possible. However, the increasing
specialization of network processors can thwart goals of flexibility
and scalability. The Field Programmable Gate Array (FPGA) is
an alternative technology that can fulfill the necessary
requirements for high-speed concurrent packet processing, and
which can be harnessed in tandem with complementary general-
purpose processors.
A simplistic view of an FPGA is that it just comprises a two-
dimensional array of programmable logic gates, together with
programmable interconnection of logic gates to form logic
circuitry. However, the modern FPGA device is a very complex
system on chip, including also memory blocks, multiplier-
accumulator units, and embedded processors, for example. Thus,
the FPGA is now a parallel assemblage of diverse programmable
components, with a programmable interconnection network
between these components. The big challenge though is to make
this raw computational substrate available for easy use by the
networking system designer.
The large, and increasing, sizes of the programmable logic array
alone (for example, the largest devices now have over 2,000,000
programmable logic cells) mean that circuit designs can be very
complex. Added to this is the further complexity of targeting the
overall programmable system on chip capabilities. Almost no-one

now tackles implementation at the level of the basic FPGA
capabilities. The standard approach, reflecting hardware design in
general, is to use hardware description languages, such as Verilog
and VHDL, as a starting point. While this is distinctly higher
level than raw logic design, it is still hard and requires expert
empathy with the technology, for example, through attention to
timing detail and signaling detail. This hardware haze obscures a
higher-level view of the functions that are being implemented.
A key feature of using PP is the much higher level of description
language, supported by its efficient compilation to FPGA-based
implementations. The effect is to unveil the capabilities of the
FPGA to the networking expert. Section 3 of the paper describes
a compiler that processes PP descriptions and generates high-
performance FPGA-based implementations that exploit the
programmability of the technology. These implementations
include extremely wide (up to 2048-bit) parallel data paths for
streaming packet data through heavily pipelined tailored function
units. Section 4 of the paper describes the pipeline stage micro-
architecture, and how it can be reprogrammed while in operation,
to allow dynamic modifications and upgrades reflected in changes
to the original PP description.

1.3 Benchmarking
A benchmark suite of 10 examples described using PP was
constructed, based on real requirements reported by a number of
major telecommunication equipment vendors. These include
examples that are predominantly ‘layer 2’, including MPLS labels
and Ethernet and VLAN headers, and also predominantly ‘layer 3
and above’, including IPv4, IPv6, TCP, UDP and RTP headers.
Section 5 of the paper introduces the suite, and includes a detailed
explanation of the PP compilation process for one example.
Experimental results are reported in Section 6. These are all
targeted at the Xilinx Virtex-7 HT FPGA device. These results
illustrate the scalability of the PP approach by showing that a
wide range of packet throughputs can be obtained through varying
the instructions given to the compiler. In particular, the results
show that 400 Gb/s throughput can be obtained (although, in fact,
the parser is capable of a raw 600 Gb/s throughput). The results
also indicate scaling of the amount of FPGA resource required
and the parsing latency, for the different throughputs.

1.4 Remainder of Paper
Section 7 contains a discussion of related work, and the paper
closes with a summary of conclusions and future directions in
Section 8.

2. PP Language
The Packet Parsing (PP) language treats packets in an object-
oriented style, in order to provide a familiar model for software
engineers. In a PP description, an object class is defined for each
kind of packet header that is to be parsed. Then the header stack
of a packet is conceptually viewed as being a linked list of
objects, one per header, the class of each object corresponding to
the header type. The definition of a class contains two parts:

• A structure which defines the format of the header in
terms of an ordered list of fields; and

• A set of five standard methods (three optional) which
define parsing rules for this header type.

13

The syntax of PP was minimized so that the user needs only write
down what is required for packet parsing. As an experiment, a
sugared form of the language was strictly aligned with the Java
syntax for class declarations, thereby providing embedding in a
standard programming language. However, typical descriptions
were doubled in length, due to redundant features and verbose
style.

An example class declaration, for IPv4 header parsing, is:

class IPv4 {

 struct { version : 4,
 hdrLen : 4,
 tos : 8,
 length : 16,
 id : 16,
 flags : 3,
 offset : 13,
 ttl : 8,
 protocol : 8,
 hdrChks : 16,
 srcAddr : 32,
 dstAddr : 32,
 options : *
 }

 method next_header = protocol;
 method header_size = hdrLen*32;
 method key_builder =
 {srcAddr, dstAddr, protocol};
 method earliest = 2;
 /* method latest = OMITTED */

}

Here, the struct part lists the well-known IPv4 header fields,
with widths in bits, in transmission order. The options field
has a ‘wild card’ width, indicating that it is not statically
determinable in advance.

The two compulsory methods are next_header and
header_size, which guide the parsing algorithm. The
next_header method computes the class of the next header to
be parsed, as an unsigned integer value (here just the value of the
protocol field). A special done() expression can be used to
indicate completion of parsing.

The header_size method computes the size in bits of the
header being parsed, and thence the offset of the next header
within the packet. Here it is just the value of the hdrLen field
(IPv4 header length in 32-bit words) multiplied by 32. A special
size() expression can be used to give the size of the header if it
can be statically determined in advance. It is easy to see how,
together, these two methods can steer the parsing of a header
stack.

The final piece of describing the parsing algorithm is that the PP
description must have a starting class and a starting offset. If the
former is not specified, then the first class appearing in the PP
description is used. If the latter is not specified, then a zero offset
is used.

The key_builder method is optional. It is used to define a
contribution to the parsing result from a header object. This result
is accumulated as parsing proceeds. Here, the srcAddr,

dstAddr and protocol fields are included. For example, if
followed by TCP header parsing that contributes source and
destination port numbers, this would provide the basis for
generating a standard TCP/IP five-tuple as a result of the packet
parsing. If no key building is included, then the default is to
provide the final class number (i.e., packet header type) as a
parsing result.

The remaining two methods, earliest and latest, are
optional assistance to the PP compiler. These indicate the earliest
and latest points, respectively, at which this header type can occur
in a header stack. Here, for example, the earliest method is
giving the value 2, indicating that the IPv4 header will have at
least one layer of encapsulation (e.g., within an Ethernet packet).
For some PP descriptions, with very statically defined header
formats and parsing rules, the PP compiler can work out earliest
and latest values for each class. However, in general, header
stacks are dynamic on a per-packet basis.

Although the right-hand sides of the method declarations in this
example are very simple, PP allows arbitrary expressions, in terms
of packet field values and constants, to be used for
next_header, header_size, and key_builder. These
can be explicitly coerced to required bit widths, if necessary. In
particular, conditional if-then-else expressions are allowed in
order to express more complex parsing behavior. Instances of this
can be seen in the benchmarking example presented in Section 5.

Note that the current form of PP involves read-only access to
packets. In the future, it could be extended to include packet
modification as a side effect of the parsing process.

As stated in Section 1.1, and as can be seen from the overview
provided here, PP descriptions are completely implementation
independent, saying nothing about how packet data is presented
for parsing, or how the parsing algorithm is implemented. PP is
thus suitable for either hardware or software implementation.
Any additional implementation information is provided to a PP
compiler, rather than being part of the PP description.

3. Compiling PP to Programmable Logic
The main goal for the FPGA-based parsing implementation was to
achieve packet throughput in the 100s of Gb/s range, employing a
scalable approach that would not require substantial re-
engineering with each new step in required throughput. The
physical constraints were the amount of programmable logic
available on target FPGA devices, and the achievable clock rates
for such logic. The typical range for the latter is between 200 and
400 MHz, assuming fairly careful logic design. Because of this, it
is necessary to use wide data paths, for example, a 512-bit or
1024-bit data path width to obtain an overall 200 Gb/s data rate.
The setting for the packet parsing module generated by the PP
compiler is one involving the streaming of packet data through the
module, using a very wide data path. In some cases, this packet
data might just consist of the relevant header part, following
payload offload to temporary memory; in other cases, notably
initial packet classification, this data is the entire packet. The
packet parsing is performed on the fly as the packets stream
through. In other words, the module has cut-through operation,
rather than store and forward, which introduces higher packet
processing latency.
In order to achieve clock frequencies in the desired range,
pipelining is deployed extensively in the packet parsing module
generated by the compiler.

14

Figure 1. Packet parsing pipeline architecture

Figure 1 shows the top-level architecture. The two basic
dimensions are the width of the packet data path (which
determines the raw throughput), and the length of the parsing
pipeline (which depends on the complexity of the parsing
algorithm). The PP compiler performs a natural mapping between
the parsing algorithm and the pipeline: there is one pipeline stage
for each level in a packet header stack. That is, as a packet
advances through the pipeline, one header is parsed at each stage.
In steady state operation, multiple packets are being parsed
simultaneously in the pipeline.
To guide the basic architectural dimensioning, two parameters are
supplied to the PP compiler by its user. The first is a target
throughput: this leads to selection of a data bus width based on
expected clock frequency. The second is a maximum parse depth
(i.e., maximum header stack size): this leads to selection of the
number of pipeline stages. Based on an analysis of the PP
description, the compiler determines which subset of the defined
header types could occur at each of the pipeline stages. User
specification of earliest and/or latest methods within
classes assists in this determination.
After this analysis, the compiler generates pipeline stage
implementations that are customized to handle precisely the right
subset of headers. When a packet enters a stage, it is
accompanied by two critical pieces of control information. The
first identifies the header type to be parsed at that stage, and the
second identifies the offset within the packet where parsing
should start. In terms of the PP description, these two values
correspond to the next_header and header_size method
results from the previous stage.
Note that the pipeline width and length, and the contents of each
pipeline stage, are fully customized for the particular parsing

algorithm given in the PP description. Creation of a bespoke
virtual architecture is a significant feature of using programmable
logic as the implementation medium. This is in contrast to using
ASSP, CPU, or NPU, technologies, where the non-trivial task is to
map problem instances onto fixed architectures efficiently. Here,
the architecture is mapped on to the problem instance. The results
of this work, as reported in Section 6, indicate that the indirection
through programmable logic does not impede the achievement of
required performance. Further, the precise architectural
customization might reduce power consumption, through omitting
redundant components that are present in ‘one size fits all’ fixed
architectures.
The basic function of each pipeline stage is to evaluate the
expressions for the next_header, header_size, and (if
present) key_builder, methods that feature in the class for the
header type selected for parsing of the packet that is passing
through this stage. This involves obtaining the values of all the
packet header fields that feature in these expressions, by
extracting them from the wide words of the packet as they are
streamed through the stage. Note that individual fields may
overlap one or more words, depending on the exact packet
structure and its mapping onto the selected data path width.
Multiple packets may also overlap in the same word, especially
with very wide data buses. For example, a 64-byte minimum-size
Ethernet packet fits within a single 512-bit data path region.
Each pipeline stage generated by the compiler contains
customized logic to perform packet field extraction. This involves
counting until the first word of interest, and then shifting and
masking to form each field value. Note that these tasks are non-
trivial given the data path widths and the desired clock rates, and
so careful logic design was necessary. The stage also contains
arithmetic logic to compute the expressions. This is heavily
pipelined, in order to maintain the necessary clock rate. The
extent of the pipelining depends on the complexity of the
expressions. In practice (as will be seen in Section 5), expressions
tend to be relatively simple.
The internal micro-architecture of a stage follows a standard
template, connecting five basic components that incorporate the
necessary customizations for that stage. Using this template
provides timing guarantees for the enclosed logic circuitry and, in
addition, supports programmability of pipeline stages during
operation.

Stage Noffset

hdr type

data
packet packet

data

header
final

offset
final

data
packet

final keykey

initial
header

initial
offset

Header

Parsing

Stage 0

Header

Parsing

Stage 1

Header

Parsing

packet data

offset

key

next offset

next key

Compute

Locate Extract

Key

Builder

Lookup
next headerheader

packet data

Figure 2. Micro-architecture of a parsing pipeline stage.

15

4. Parsing Pipeline Stage Micro-architecture
Figure 2 shows the internal micro-architecture template for the
pipeline stages generated by the PP compiler. As indicated in
Section 3, packet data enters the stage wordwise, and leaves the
stage unchanged. A header type value and a packet data offset
enter the stage, and new values for both, computed using the
methods defined for this header type, leave the stage. Finally, an
accumulated key value enters the stage, and an updated key value
as specified by the key_builder method, leaves the stage.

Functionally, a header parsing stage operates as follows. When a
packet starts to arrive at the input of a header parsing stage, it
comes in tandem with the header type identifier, the offset in the
data stream, and a key being constructed. A header type lookup
component uses the input header type identifier to fetch
customized microcode that programs the remaining components
in the stage to be able to handle the particular header type.
Meanwhile, the input header offset within the packet stream is
forwarded to a locate component that finds the header within the
input packet stream. The locate component works in tandem with
an extract component that discovers header fields for use in
parsing computations, and key building. A compute component
performs operations associated with the methods in the parsing
description, such as computing the next header and the header
size. Results of the compute component can also be forwarded to
an optional key builder component that constructs a revised
parsing key. Each of the five components is described in more
detail in the sections that follow.

One reason for using per-packet microcoding is to allow sharing
of a common set of components in order to parse any of the
header types that must be handled at a particular pipeline stage.
This was chosen as a more resource-efficient alternative to having
n sets of components, one set for each possible header type.

4.1 Lookup Component
The header type lookup component fetches microcode to then
program the rest of the stage to handle the particular header type
to be parsed. The other main reason for using microcode in each
parsing stage is to allow the packet parser to be modified while
operating: to add, remove, and/or modify the particular header
types that can be parsed in a stage. This aspect is discussed
further in Section 4.7.
Microcode stores header offsets and sizes of fields to be extracted
as part of computing the header object methods. The microcode
also stores information on what compute operations to perform
and with what data. Data can be sourced from packet fields or
from constants embedded within the microcode. Finally, the
microcode additionally indicates whether to update the key result
that is accumulated from stage to stage.
Microcode is stored locally in a parsing stage for each possible
header that can be parsed within that given stage. Microcode
cannot be shared across stages in general due to the fact that
different sets of header types may be found in different parsing
stages. Different collections of header types result in different
configurations of components within the parsing stage, which then
each have unique microprogramming requirements.
Depending on how many microcode entries exist in the header
parsing stage and the size of each microcode entry, the lookup
component will store and retrieve the microcode differently.
When relatively few entries are required in a stage, microcode is
simply stored locally in flip-flops. Retrieval, then, is merely a

matter of implementing a multiplexer. When the number of
header types parseable in the stage climbs, the associated
microcode entries are more efficiently stored in block memory
that is distributed throughout FPGA devices. Retrieval from
block memory amounts to simply providing an address, such as
the unique identifier given to each header type.

4.2 Locate Component
Packet data streams through each parsing stage in a word-wise
fashion. It is the responsibility of the locate component to locate
and deserialize the portion of a packet header that contains the
fields required for computations within the stage. The input
header offset indicates where the header starts in the packet
stream. Microcode then provides the starting point within the
header, and the size of the region containing the fields of interest.
The locate component unpacks the header from the packet stream
by handling data word boundary and alignment issues. Since the
word width of the streaming packet interface is a parameter to the
PP compiler, the template for the locate component is
configurable to support different data widths.
Location of the header amounts to counting input words based on
the starting point, and then accumulating the contents of as many
words as are required to capture the fields of interest. As an
example, in the IPv4 parsing description shown in Section 2, the
first required field is hdrLen and the last required field is
dstAddr, and so a 156-bit section of the packet would be
captured.

4.3 Extract Component
The extract component consists of a number of extraction units,
one for each packet field that is required by computations within
the stage. Given that the stage must support a set of header types,
the number of units required is determined by the header type that
uses the largest number of fields. The input to this component is
the deserialized packet header segment produced by the locate
component. Microcode instructs each extraction unit on the offset
and size of its field within this segment.

The extraction is performed by a shifting and masking approach.
The implementation of this is non-trivial though, given the need to
cater for arbitrarily large offsets and field widths, and to maintain
the desired clock rate. A pipelined shifting approach was used,
involving 16 choices of shift distance at each stage, the
granularity of distance increasing by 16x at each stage. For
example, a 92-bit shift to extract the IPv4 srcAddr field from a
156-bit segment would involve two successive shifts, by 12 and
80 respectively.

4.4 Compute Component
The compute component consists of a number of compute units,
one for each expression that is evaluated in the stage. There are at
least two units, one used for next_header method
computation, the other used for header_size method
computation, plus an additional number of units (possibly zero)
required by the header type that has the largest key_builder
tuple size. Microcode instructs each unit on the expression to be
evaluated, including the sources of its operands and its operators.
The PP compiler optimizes each compute unit, and its microcode,
so that it has precisely the minimal data path width and functional
capabilities that are required to compute a particular method’s
expression for all of the different header types that are supported
at the pipeline stage.

16

Each compute unit is organized using pipelines for expression
evaluation, with a single two-input arithmetic or logical operation
being done at each stage. The simple stages allow the desired
clock frequency to be maintained. The pipeline stages are
organized to carry out a stack-based expression evaluation
scheme. An operand/result value stack is passed along the
pipeline. On entry, this contains all of the operand values for the
expression and, on exit, this contains the result of evaluating the
expression. At each stage, the top two values are popped from the
stack, combined with a two-input operation, and the result is
pushed onto the stack. Microcode selects the operator to be used
at each stage, drawn from a range including addition, subtraction,
shifting, comparisons, and bit-wise operations.

When the definition of a method includes an if-then-else
construct, evaluation of the result is done using three of the above
pipelines in parallel. One computes the if-condition, one
computes the then-result, and the other computes the else-result.
Note that both of these results are computed speculatively to
reduce overall delays. The choice between them to determine the
final result is made by selection using the if-condition value.

4.5 Key Builder Component
Key building is an optional cumulative process along the parsing
pipeline. At each stage, if a header type that features a
key_builder method is being parsed, then a set of expression
results is appended to the key received from the previous stage.
The final result from parsing is then a tuple of all the accumulated
results. The key is passed between stages as a single parallel
word. Microcode instructs the key builder on the number of
values to be appended, and the sources of the values. The latter
sources are the outputs of the appropriate compute units within the
compute component. In many practical cases, as seen in the IPv4
example of Section 2, the values are just packet field values, in
which case no computation is required.

4.6 Error and Exception Handling
Parsing exceptions are expected to occur when handling live
network traffic. Malformed packets or packets with unrecognized
headers are possible. Errors and exceptions do not hinder the
operation of the packet parser. In such cases, the packet parser
flags that an unparseable packet has been encountered, but packets
that are flagged as suspect are still passed out of the pipeline along
with an indication of where the error/exception condition
occurred. This takes the form of the header type and offset value
at the time of the failure. The expectation is that some
downstream module will make a decision on the fate of these
packets. Header parsing stages transition to a pass-through mode
when they see that an incoming packet already has an
error/exception flag. In this way, throughput is maintained and
packets remain in exact input order.
As a possible future feature, it would not be hard to add support
for a compiler option calling for unparseable packets to be
dropped within the parser module.

4.7 Programmability
As seen in Sections 4.1 to 4.5, microcode instructions are used
extensively to control the behavior of the five components within
each parsing pipeline stage. This allows the same set of resources
to be shared for each of the different header types being processed
by a stage. The exact microcode format is specific to the set of
components contained in a particular stage. The size of the stored
microcode depends on the complexity of the components.

Figure 3. Pipeline stage microcode organization

The general format of the microcode is shown in Figure 3. It
consists of four sections. The first section consists of zero or
more extract size-offset pairs. These correspond to different fields
that may be extracted from the packet in order to parse a header.
The size indicates the bit width of the field, and the offset
indicates its bit position from the start of the header segment. The
second section consists of compute operations and input selectors.
One compute operation entry exists for each stage in a compute
unit pipeline. The supported operations are encoded as unique
integer identifiers. The compute input selectors program a
multiplexer to enable the appropriate inputs to reach a compute
unit. Multiplexer inputs could be the different extracted fields or
constants from the microcode. The third section consists of zero
or more sources for data to be appended to the packet's context
key. The final section consists of constants, occurring in the
header object description and then used directly in computations.
Constants can be of variable size.
The overall PP programming approach involves generating
customized parsing pipelines from a PP description. The use of
microcode enables later parsing algorithm changes without
necessarily generating a new microarchitecture. For example,
modifications to the method definitions for existing header types
may be accommodated unless they involve significantly more
complex expressions than the existing extract or compute
components can support. Also, addition of new header types,
with methods of similar complexity to existing methods, is
possible. Clearly, removal of particular header types, or
simplification of methods, is easy to accommodate. It is possible
for the PP compiler to over-provision a generated
microarchitecture, thus leaving some spare capacity for later
parsing updates.

5. Benchmark Suite
A main motivation for this research came from
telecommunication equipment providers interested in the use of
FPGA technology to provide high-performance, yet highly-
programmable, packet parsing. The requirement was to provide
an open-ended, high-level way to describe packet parsing
algorithms, and to allow in-operation updates without FPGA
circuitry changes. PP was the resulting solution to these needs.
The benchmark suite was drawn from examples required in
practical networking situations. These fall into two broad
categories: carrier (wide area and metro area networks), and end
system (access and enterprise settings). In turn, these categories
correspond to layer-two and below, and layer-three and above,
protocol settings respectively.

Size

Size Offset
ExtractExtract

InputOp
Compute Compute

Op
Key

Constant

Key
Source

Source

17

The following 10 examples were included:

• JustEth: searches Ethernet frames for the type
field – the baseline example.

• VlanAndMpls: handles Ethernet with VLAN and
MPLS encapsulation.

• AllStack: handles a combination of VLAN and
MPLS stacking, and continues through the header
stack into IPv4 or IPv6, then TCP or UDP.

• ArpIcmp: handles ARP and ICMP over Ethernet.
• TcpIp4: handles TCP within IP version 4.
• TcpIp6: handles TCP within IP version 6.
• TcpIp4andIp6: handles TCP within IP version 4

or IP version 6.
• RtpIp4: handles RTP protocol within UDP within

IP version 4.
• RtpIp6: handles RTP protocol within UDP within

IP version 6.
• RtpIp4andIp6: handles RTP protocol within

UDP within IP version 4 or IP version 6.

The parsing result varies between examples. In the first two, the
result is a 16-bit standard Ethernet type field and offset for the
next encapsulated header. In the next two examples, and the final
three examples, the result is the unearthing of the data payload
offset. In the remaining three examples, the result is a TCP/IP
five-tuple.

Figure 4 shows the complete PP description for the second
example. It is drawn from a Carrier Ethernet setting, where an
MPLS frame, with some number of MPLS tags, is used to carry
an Ethernet frame that can optionally contain some number of
VLAN (Virtual LAN) headers. The goal is to reveal the packet
being carried within the overall encapsulation: its type, and its
offset within the overall packet. This information can then be
used for packet classification based on content.

The description contains three classes: for MPLS, Ethernet, and
VLAN. The #define statements at the beginning make a
simplifying connection between the internal values used to
identify header types and actual values used by the standard IEEE
16-bit type numbering scheme.

Within each class, the struct part shows the familiar formats
for each of these packet header types. The methods then express
the parsing algorithm. Note that the parse will start by default
with the MPLS class since it appears first. In all three classes, the
next_offset method just returns the size() value, which is
the length of the current header (32, 112, or 32 bits respectively).
Also, these classes contain no key_builder methods, meaning
that the parsing result will just be the final next header type value
from the parsing chain.

The next_header method in the MPLS_TYPE class expresses
the fact that there will be some number of MPLS tags with the S
(bottom of stack) bit equal to zero, followed by the final tag with
the S bit set to one. At this point, an Ethernet frame will be
expected. Note that the MPLS tag format does not include an
explicit indication of the type of the MPLS payload.

Then, the next_header method in the ETH_TYPE class just
takes the type field from the Ethernet header in order to
determine the next header type to be parsed.

#define MPLS_TYPE 0x8847
#define ETH_TYPE 0x0001
#define VLAN_TYPE 0x8100

class MPLS_TYPE {
 struct {
 label : 20,
 cos : 3,
 sBit : 1,
 ttl : 8
 }
 method next_header =
 if (sBit == 0)
 MPLS_TYPE;
 else
 ETH_TYPE;
 method next_offset = size();
}

class ETH_TYPE {
 struct {
 dmac : 48,
 smac : 48,
 type : 16
 }
 method next_header = type;
 method next_offset = size();
}

class VLAN_TYPE {
 struct {
 pcp : 3,
 cfi : 1,
 vid : 12,
 tpid : 16
 }
 method next_header =
 if (tpid == VLAN_TYPE)
 tpid;
 else
 done(tpid);
 method next_offset = size();
}

Figure 4. PP source code for VlanAndMpls example

At this point, the parse will fail unless this value is equal to one of
the three values that have corresponding classes in the PP
description. For more safety, an alternative here would be to
check explicitly that type is equal to VLAN_type.

Finally, the next_header method in the VLAN_TYPE class
expresses the fact that there will be some number of VLAN tags
with their tpid field indicating a further VLAN tag within,
followed by the final tag with a tpid field indicating something
different. At this point, the special done() function is used to
indicate that parsing is complete, its argument being the
next_header result.

The PP compiler can infer from the description that the MPLS,
Ethernet, and VLAN, classes can occur earliest at the first,
second, and third places in the header stack respectively. It
cannot infer anything about their latest positions in the stack.
Thus, the generated parsing pipeline has appropriate provisioning

18

Table 1. Benchmark results for 1024-bit data path

 Resource
utilization
(% FPGA)

Clock
period
(ns)

Raw
T’put
(Gb/s)

Total
latency
(ns)

JustEth 9.2 2.985 343 293

VlanAndMpls 11.0 2.999 341 309

AllStack 11.5 3.389 302 349

ArpICMP 14.9 3.345 306 495

TcpIp4 12.1 2.984 343 292

TcpIp6 9.9 2.987 343 293

TcpIP4andIP6 12.4 3.154 325 309

RtpIp4 12.6 3.078 333 348

RtpIp6 10.8 3.133 327 354

RtpIp4andIp6 13.0 3.131 327 354

for the possible sets of header types in its stages. In particular, all
stages from the third onward have provisioning for all three
header types.

In this example, the expressions occurring in the methods for each
class only require one packet field each time, and so the generated
extract component at each stage has only one extract unit, which
has an extractee width of 16 bits. Since the method expressions
are simple, the compute component only requires one compute
unit that can perform an equality comparison operation, plus one
if-then-else parallel compute unit. These all have widths of 16
bits, since all operands and results have this width. The three
respective size() ‘function calls’ just involve the insertion of
compile-time constants into the compute component microcode.

The microcode word size for the three-header type stage was 136
bits, giving a total storage requirement of 408 bits at each stage,
which can easily be provided by local storage in flip-flops. In fact
the range of microcode word sizes over the benchmark suite was
from 40 bits (JustEth) to 372 bits (ArpIcmp), the average being
140 bits.

To illustrate possible re-programmability without the need to
change the generated pipeline architecture, it can be seen that the
above suggestion of including a conditional test on the type value
during Ethernet header parsing could be added by microcode
update, given the availability of a spare if-then-else capability in
the compute component.

6. Experimental Results
The examples in the benchmark suite were implemented for the
Xilinx Virtex-7 870HT FPGA. This FPGA was chosen because it
includes 16 28 Gb/s and 72 13.1 Gb/s serial transceivers. Thus,
one future setting for the parser would be with packet input via a
400 Gb/s Ethernet MAC attached to 16 28 Gb/s transceivers, and
packet output via a 600 Gb/s Interlaken interface attached to 48
12.5 Gb/s transceivers. The FPGA contains 136,900 ‘slices’, each
containing four six-input lookup tables (LUTs) and eight flip-
flops (FFs).

The PP compiler generates a description of the customized
pipeline parsing architecture in either VHDL or Verilog hardware

Table 2. Benchmark results for 2048-bit data path

 Resource
utilization
(% FPGA)

Clock
period
(ns)

Raw
T’put
(Gb/s)

Total
latency
(ns)

JustEth 17.2 2.983 687 292

VlanAndMpls 18.9 3.068 668 316

AllStack 22.7 3.542 578 365

ArpICMP 23.1 3.648 561 540

TcpIp4 20.9 3.117 657 305

TcpIp6 17.7 3.338 614 327

TcpIP4andIP6 21.0 3.243 632 318

RtpIp4 22.2 3.468 591 392

RtpIp6 19.0 2.992 685 338

RtpIp4andIp6 22.6 3.205 639 362

description language, VHDL being chosen here. These
descriptions were then processed by the standard Xilinx ISE 13.1
design tool suite, which performed synthesis, placement, routing,
and bitstream (FPGA physical programming information)
generation. A feature of the PP design environment is that, when
the complete FPGA implementation process has been done once,
it indicates whether subsequent modifications to the parsing
algorithm can be implemented just by making microcode updates,
or whether a revised architecture has to be generated. The PP
environment includes a software driver that is used to write to
microcode memory on the FPGA. The correctness of the FPGA
implementations was validated using simulation of the (pending)
Virtex-7 FPGA and a surrounding 400 Gb/s networking setting.

For all the experiments, a maximum parsing depth of five headers
was specified to the PP compiler, this being enough to be realistic
for all of the examples. A range of target throughputs was
requested, to explore the scalability of the approach. These
translated into different data path widths in the parsing pipeline
architecture. The FPGA resource utilizations, and achieved
performance, were measured.

Tables 1 and 2 contain experimental results for 1024-bit and
2048-bit data paths, respectively. The first column shows FPGA
resource utilization, in terms of the percentage of the Virtex-7
870HT slices used for the implementation. Estimates for the
combined sizes of future 400 Gb/s Ethernet MAC and 600 Gb/s
Interlaken interface blocks are approximately 65% of this FPGA,
and so a combined bridging and parsing subsystem contained on a
single Virtex-7 family FPGA is practicable.

The clock periods shown in the second column translate into clock
rates of between 274 and 335 MHz, which is in the range that the
carefully pipelined architecture was designed to guarantee. These
clock rates then translate into the raw throughput shown in the
third column, obtained by multiplying by the data path width. It
can be seen that the 1024-bit data path gives results just below the
‘headline rate’ of 400 Gb/s, whereas the 2048-bit data path gives
results well above this. However, caution must be taken with
these raw throughput figures, as the effect of short packets and
quantization over a wide word size must be taken into account.

19

Figure 5. Resource utilization versus data path width

Figure 6. Raw throughput versus data path width

Figure 7. Total latency versus data path width

TcpIp6

 1600 1800

TcpIp4andIp6

 2000 2200

VlanAndMpls

RtpIp4
D

ev
ic

e
U

ti
li

za
ti

on
 (

%
)

Data Path Width (bits)

RtpIp6

 0

 5

RtpIp4andIp6

 10

 15

 20

 25

 0 200

AllStack

 400 600

ArpIcmp

 800 1000

TcpIp4

 1200 1400

JustEth

 600 1600 1800

TcpIp4andIp6

 2000 2200

VlanAndMpls

RtpIp4

T
hr

ou
gh

pu
t (

G
b/

s)

Data Path Width (bits)

RtpIp6

 0

 100

RtpIp4andIp6

 200

 300

 400

 500

 600

 700

 0 200

AllStack

 400

JustEth

ArpIcmp

 800 1000

TcpIp4

 1200 1400

TcpIp6

RtpIp4andIp6

 1800

TcpIp4andIp6

 2000 2200

 350

 400

 450

 500

 550

 600

 650

RtpIp4

VlanAndMpls

L
at

en
cy

 (
na

no
se

co
nd

s)

Data Path Width (bits)

 700

 0 200

AllStack

 400 600 800

RtpIp6

 250

 300

 1000

JustEth

 1200

TcpIp4

 1400

TcpIp6

ArpIcmp

 1600

20

For example, if only one packet per word is allowed, then a series
of minimum-size 64-byte Ethernet packets would only occupy
25% of the 2048-bit data path width, sharply reducing the real
throughput.

To guarantee full 400 Gb/s data throughput for minimum-size
Ethernet packets, that is, handling 600 million packets per second,
one solution is to divide the 2048-bit wide data path into eight
256-bit logical lanes, allowing a new packet to start in alignment
with any lane. With this arrangement, a maximum of four packets
might be in flight during one word time, which can be handled
directly using four parallel copies of the parsing pipeline. For the
benchmark examples, this parallel solution, with an Interlaken
interface, would suit a Xilinx Virtex-7 1140XT FPGA.
The final column in the tables shows the latency of the packet
parsing. Because of the basic pipeline architecture, the latency is
essentially directly proportional to the selected parsing depth,
which was fixed as five in these experiments. The average
latency per header parsed was between 58 and 108 ns in the 2048-
bit data path case. This latency represents a trade-off against the
need for high throughput, achieved by the use of large-scale
pipelining. Note that the latency does not introduce any need for
temporary packet buffering elsewhere outside the parsing module,
since the packets are stored in a distributed manner as they pass
through the parsing pipeline. The latencies reported here are
deterministic, and are acceptable for various practical scenarios
within future high-throughput telecommunications equipment.
Figures 5, 6, and 7 show experimental results across a wider range
of data path widths: 64, 128, 256, 512, 1024, and 2048. These
demonstrate the scalability of the PP approach, since the different
implementations were all derived by compiling the same PP
descriptions. At the low end of the scale, these results show that a
64-bit data path can supply 20 Gb/s packet throughput using
relatively modest FPGA resources. It can be seen that resource
usage does not double with each doubling of the data path width,
indeed increases with a much less steep linear function. This is
because the bulk of the resource is consumed by the compute
components. Since these operate on narrow operands, extracted
from the very wide data path, they remain the same size with
upwards scaling.
The throughput increases in step with the data path width
increases, as intended. This is a little less than doubling with each
width doubling and shows increasing variability between
examples, because of more challenging layout of wide data paths
on the FPGA that results in some reduction in the achievable
clock rate. The latency remains largely flat with increasing data
path width, essentially because the extent of pipelining remains
the same for all data path widths above the 512-bit data width
threshold.

A further experiment used a data path width of 4096, which gave
results consistent with scaling upwards further. However, as
discussed earlier, the multiple packet per word problem is more
acute here, and requires further mechanisms. This is a matter that
will be addressed in future work.

7. Related Work
There are three main areas of prior work relating to this research:
technologies for packet processing at rates up to 100 Gb/s; packet
lookup and classification; and languages for packet processing
and/or targeting programmable logic.

Karras et al. [11] present a folded pipeline architecture for 100
Gb/s carrier networking, handling both MPLS labels and PBB
Carrier Ethernet. Wu et al. [28] discuss the simplification of data
path processing in next generation routers. Mudigonda et al. [20]
discuss the impact of the ‘memory wall’ on high-speed packet
processing. Current specialized commercial devices extend to 40
Gb/s rates, for example the NetLogic knowledge-based processor
families [23], or the Cavium multi-core processor plus
acceleration families [5]. The latest NetFPGA platform [22]
supports FPGA-based networking research at up to 40 Gb/s rates.
An increasingly important topic is the introduction of new
protocols into networking equipment. Anwer et al. [1] describe
Switchblade, a platform for rapid deployment of network
protocols on programmable hardware. Carli et al. [4] describe
PLUG, a means for deploying flexible lookup modules in high-
speed routers. OpenFlow [21] provides an open framework for
enhancing packet routers.
Kobiersky et al. [13] utilize an XML description to auto-generate
finite state machines for protocol handling at up to 20 Gb/s rates.
The XML enumerates the FSM transitions, one per possible
parsing path. Packets are streamed through the system, and each
byte is checked for relevant fields to extract. A concern with this
work is scalability. The use of a crossbar in the extraction unit
will have difficulty scaling with increasing data path widths.
Additionally, when a larger number of protocols are to be
handled, the generated state machine could become a performance
bottleneck.
The Kangaroo packet parsing architecture of Kozanitis et al. [15]
can deal with 40 Gb/s line rates. It utilizes a TCAM to enable
speculative fetching of pre-defined offsets in a packet. Based on
which TCAM entry matches, the packet format is known. The
TCAM entry returns the next instruction to perform. Packets are
stored in memory, and instructions dictate packet fields to be
fetched from the stored packet. The lookahead stride for
protocols to handle is, therefore, limited by how many fields must
be fetched from the memory subsystem. An offline algorithm is
used to construct the TCAM entries.
Most published research on packet classification has focused on
two other topics, IP address lookup for routing and matching
against rule sets, with initial packet parsing presumed done in
advance. Prasanna et al. [10,17,29] have demonstrated IP address
lookup at up to 100 Gb/s rates using FPGA implementation; other
IP address lookup research includes [16,18,25,27]. Packet
matching research is typically based on the Snort [2] rule-based
intrusion detection technology. Examples of packet classification
that match against rule sets at up to 20 Gb/s rates include
[12,19,26].
A number of domain-specific programming languages for packet
processing have been proposed, albeit not usually targeted for
programmable logic, for example, Baker [6], FPL [7], and
PacketC [9]. Click [14] is well-known as a system for building
software routers. Rubow et al. [24] show an environment for
targeting programmable logic using a Click approach. Brebner
[3] introduced the G language for packet inspection and editing,
targeted at FPGA implementation at up to 20 Gb/s data rates.
There has been considerable research into high-level synthesis,
i.e., mapping general-purpose languages (usually C or C++ based)
onto programmable logic. Much of this concerns efficient loop
unrolling to form pipelines. For example, Cong and Zou [8] have
studied dynamic nested loops. This work has most application in
digital signal processing rather than packet processing.

21

8. Conclusions and future work
Overall, the experimental results confirm that the modern FPGA
possesses sufficient programmable computational capabilities to
process packets at very high line rates. The research in particular
shows that this raw, distributed, and fine-grain power can be
harnessed by the networking expert, through the automatic
building of customized packet processing architectures, driven by
high-level domain-specific programming descriptions.
The larger context for this research is to embed the packet parsing
capability within a complete network processing system. The first
step (already demonstrated at a 100 Gb/s line rate) is coupling the
parsing module with a key lookup module, in order to perform
complete packet classification. The latter module was also
generated automatically from a high-level description, employing
a number of heavily pipelined architecture templates based on the
pioneering work of Prasanna et al. In turn, this packet
classification subsystem is being coupled with a traffic
management subsystem, to demonstrate a complete 400 Gb/s
network processor using a dual Xilinx Virtex-7 implementation.

9. REFERENCES
[1] Anwer, M. B., Motiwala, M., bin Tariq, M., and Feamster, N.

2010, Switchblade: a platform for rapid deployment of
network protocols on programmable hardware. In
Proceedings of the ACM SIGCOMM Conference (New
Delhi, Aug. 2010), 183-194.

[2] Baker, A., Esler, J., and Alder, R. 2007. Snort IDS and IPS
Toolkit. Syngress Publishing, Inc.

[3] Brebner, G. 2009, Packets everywhere: the great opportunity
for field programmable technology. In Proceedings of the
IEEE International Conference on Field-Programmable
Technology (Sydney, Australia, Dec. 2009), 1-10.

[4] Carli, L. D., Pan, Y., Kumar, A., Estan, C., and
Sankaralingam, K. 2209. PLUG: flexible lookup modules
for rapid deployment of new protocols in high-speed routers.
In Proceedings of the ACM SIGCOMM Conference
(Barcelona, Spain, Aug. 2009), 207-218.

[5] Cavium Networks. http://www.caviumnetworks.com.
[6] Chen, M., et al. 2005. Shangri-La: achieving high

performance from compiled network applications while
enabling ease of programming. Proceedings of the 2005
ACM SIGPLAN Conference (Chicago, IL USA, Jun. 2005),
224-236.

[7] Comer, D. 2004. Network System Design Using Network
Processors, Agere version, Prentice-Hall, Inc.

[8] Cong, J., and Zou, Y. 2010. A comparative study on the
architecture templates for dynamic nested loops. In
Proceedings of the IEEE Symposium on Field-Programmable
Custom Computing Machines (Charlotte, NC USA, May
2010), 251-254.

[9] Duncan, R., and Jungck, P. 2009. PacketC language for high
performance packet processing. Proceedings of the 11th
IEEE International Conference on High Performance
Computing and Communications (Seoul, Korea, Jun. 2009),
450-457.

[10] Jiang, W., and Prasanna, V. 2007. A memory-balanced
linear pipeline architecture for trie-based IP lookup. In

Proceedings of the 15th Annual IEEE Symposium on High-
Performance Interconnects (Stanford, CA USA, Aug. 2007),
83-90.

[11] Karras, K., Wild, T., and Herkersdorf, A. 2010. A folded
pipeline network processor architecture for 100 Gbit/s
networks. In Proceedings of the 6th ACM/IEEE Symposium
on Architectures for Networking and Communications
Systems (La Jolla, CA USA, Oct. 2010), 2:1-2:11.

[12] Kennedy, A., Wang, X., Liu, Z., and Liu, B. 2008. Low
power architecture for high speed packet classification. In
Proceedings of the 4th ACM/IEEE Symposium on
Architectures for Networking and Communications Systems
(San Jose, CA USA, Nov. 2008), 131-140.

[13] Kobierský, P., Ko�enek, J., and Pol�ák, L. 2009. Packet
header analysis and �eld extraction for multigigabit
networks. In Proceedings of the IEEE Symposium on Design
and Diagnostics of Electronic Circuits and Systems (Liberec,
Czech Republic, Apr. 2009), 96–101.

[14] Kohler, E., Morris, R., Chen, B., Jannotti, J., and Kaashoek,
M. 2000. The Click modular router. ACM Transactions on
Computer Systems 18 (Aug. 2000), 263-297.

[15] Kozanitis, C., Huber, J., Singh, S., and Varghese, G. 2010.
Leaping multiple headers in a single bound: wire-speed
parsing using the Kangaroo system. In Proceedings of the
29th IEEE Conference on Computer Communications (San
Diego, CA USA, Mar. 2010), 830–838.

[16] Lakshminarayanan, K., Rangarajan, A., and Venkatachary, S.
2005. Algorithms for advanced packet classification with
ternary CAMs. In Proceedings of the ACM SIGCOMM
Conference (Philadelphia, PA USA, Aug. 2005), 193-204.

[17] Le, H., Jiang, W., and Prasanna, V. 2008. Scalable high-
throughput SRAM-based architecture for IP-lookup using
FPGA. In Proceedings of 18th International Conference on
Field Programmable Logic and Applications (Heidelberg,
Germany, Sept. 2008), 137-142.

[18] Lim, H., and Mun, J. 2007. High-speed packet classification
using 2-dimensional binary search on length. In Proceedings
of the 3rd ACM/IEEE Symposium on Architectures for
Networking and Communications Systems (Orlando, FL
USA, Dec. 2007), 137-144.

[19] Mitra, A., Najjr, W., and Bhuyan, L. 2007. Compiling PCRE
to FPGA for accelerating SNORT IDS. Proceedings of the
3rd ACM/IEEE Symposium on Architecture for Networking
and Communications Systems (Orlando, FL USA, Aug.
2007), 127-136.

[20] Mudigonda, J., Vin, H., and Yavatkar, R. 2005.
Overcoming the memory wall in packet processing:
Hammers or ladders? In Proceedings of the 1st ACM/IEEE
Symposium on Architectures for Networking and
Communications Systems (Princeton, NJ USA, Oct. 2005),
1-10.

[21] Naous, J., Erickson, D., Covington, A., Appenzeller, G., and
McKeown, N. 2008. Implementing and deploying an
OpenFlow switch on the NetFPGA platform. In Proceedings
of the 4th ACM/IEEE Symposium on Architectures for
Networking and Communications Systems (San Jose, CA
USA, Nov. 2008), 1-9.

[22] NetFPGA. http://www.netfpga.org.
[23] NetLogic Microsystems. http://www.netlogicmicro.com.

22

[24] Rubow, E., McGeer, R., Mogul, J., and Vahdat, A. 2010.
Chimpp: A Click-based programming and simulation
environment for reconfigurable networking hardware. In
Proceedings of the 6th ACM/IEEE Symposium on
Architectures for Networking and Communications Systems
(La Jolla, CA USA, Oct. 2010), 36:1-36:10.

[25] Sourdis, I., Stefanakis, G., de Smet, R., and Gaydadjiev, G.
2009. Range tries for scalable address lookup. In
Proceedings of the 5th ACM/IEEE Symposium on
Architectures for Networking and Communications Systems,
(Princeton, NJ USA, Oct. 2009), 143-152.

[26] Tao, Z., Yonggang, W., Lijun, Z., and Yang, Y. 2009. High
throughput architecture for packet classification using FPGA.
In Proceedings of the 5th ACM/IEEE Symposium on
Architectures for Networking and Communications Systems
(Princeton, NJ USA, Oct. 2009), 62-63 .

[27] Vamanan, B., Voskuilen, G., and Vijaykumar, T. 2010.
Efficuts: optimizing packet classification for memory and
throughput. In Proceedings of the ACM SIGCOMM
Conference (New Delhi, India, Aug. 2010), 207-218.

[28] Wu, Q., Chasaki, D., and Wolf, T. 2009. Simplifying data
path processing in next-generation routers. In Proceedings of
the 5th ACM/IEEE Symposium on Architectures for
Networking and Communications Systems (Princeton, NJ
USA, Oct. 2009), 11-19.

[29] Yang, Y., and Prasanna, V. 2010. High Throughput and
Large Capacity Pipelined Dynamic Search Tree on FPGA.
In Proceedings of the 18th ACM/SIGDA International
Symposium on Field Programmable Gate Arrays (Monterey,
CA USA, Feb. 2010), 83-92.

23

