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ABSTRACT 
Packet parsing is necessary at all points in the modern networking 
infrastructure, to support packet classification and security 
functions, as well as for protocol implementation.  Increasingly 
high line rates call for advanced hardware packet processing 
solutions, while increasing rates of change call for high-level 
programmability of these solutions.  This paper presents an 
approach for harnessing modern Field Programmable Gate Array 
(FPGA) devices, which are a natural technology for implementing 
the necessary high-speed programmable packet processing.  The 
paper introduces PP: a simple high-level language for describing 
packet parsing algorithms in an implementation-independent 
manner. It demonstrates that this language can be compiled to 
give high-speed FPGA-based packet parsers that can be integrated 
alongside other packet processing components to build network 
nodes. Compilation involves generating virtual processing 
architectures tailored to specific packet parsing requirements.  
Scalability of these architectures allows parsing at line rates from 
1 to 400 Gb/s as required in different network contexts.  Run-time 
programmability of these architectures allows dynamic updating 
of parsing algorithms during operation in the field.  
Implementation results show that programmable packet parsing of 
600 million small packets per second can be supported on a single 
Xilinx Virtex-7 FPGA device handling a 400 Gb/s line rate. 

Categories and Subject Descriptors 
C.2.6 [Computer-Communication Networks]: Internetworking—
Routers; C.1.3 [Other Architecture Styles]: Pipeline Processors; 
D.3.4 [Programming Languages]: Processors – Parsers. 

General Terms 
Algorithms, Performance, Design, Languages. 

Keywords 
High-speed packet processing.  FPGA-based parallel processing.  
Domain-specific languages and compilers. 

 

1. INTRODUCTION 
As the Internet evolves, there is a growing need for non-trivial 
packet parsing at all points in the networking infrastructure, 
including the core carrier networks.  Parsing is central to packet 
classification in order to identify flows and implement quality of 
service goals.  Increasingly, it is also important to guide deeper 
packet inspection in order to implement security policies.  Of 
course, packet parsing also continues to have a central role in the 
implementation of end-to-end communication protocols.  With 
core networks moving to 100 Gb/s rates, and 400(±100) Gb/s 

rates on the horizon, packet parsing at line rates poses a major 
problem.  A further complication is that parsing requirements can 
change frequently as network traffic patterns evolve and protocols 
are introduced, modified or replaced.  This demands dynamic 
flexibility within networking equipment. 

A packet in transit consists of a stack of headers, a data payload, 
and – optionally – a stack of trailers.  At an end system, a packet 
might begin with a stack of Ethernet, IP and TCP headers, for 
example.  In a core network, a packet might begin with a stack of 
various Carrier Ethernet or MPLS headers, reflecting en-route 
encapsulation, for example.  The basic parsing problem can be 
formulated as traversing a stack of headers in order to: 

• Extract a key from the stack (e.g., a 16-bit packet type 
field or a TCP/IP five-tuple); and/or 

• Ascertain the position of the data payload (e.g. to enable 
deeper packet inspection). 

The traversal is guided by a parsing algorithm consisting of rules 
for interpreting different types of header format.  Note that, 
without loss of generality, this approach can be extended to the 
parsing of packet trailers, if required.  The parsing process must 
also smoothly handle failures of parsing, indicating unsupported 
packet forms.  The results of parsing feed into other network 
processing components. These can include key lookup engines for 
packet classification, and regular expression matching engines for 
deep packet inspection. 

This paper presents four main contributions which, taken together, 
offer a flexible and scalable solution to the problems posed by 
high performance packet parsing: 

• Introducing a simple high-level domain-specific 
language for directly describing packet header parsing 
algorithms in an object-oriented style. 

• Using the concurrent processing capabilities of modern 
FPGA devices to enable the creation of tailored virtual 
processing architectures that match the individual needs 
of particular packet parsing algorithms. These provide 
the required packet processing performance over a wide 
range. 

• Demonstrating a fast compiler that maps a parsing 
algorithm description to a matching FPGA-based virtual 
architecture. This removes existing barriers to ease of 
use of FPGAs by hardware non-experts, and also 
facilitates experimentation with the operational 
characteristics of the implementation. 

• Embodying programmability into the virtual 
architecture, so that the parsing algorithm can be 
updated dynamically during system operation. 
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1.1 The Packet Parsing (PP) Language 
PP was specifically designed to provide a high-level way of 
describing formats of packet headers and rules for parsing these 
headers.  Thus it is a very simple domain-specific language, not a 
general-purpose programming language.  PP is completely 
protocol-agnostic, with no built-in restrictions on packet formats.  
The aim is that the PP user can concentrate on packets, and 
automatically obtain high-performance results.  PP does not 
involve specifying any details of the machinery used for parsing 
rule application.  
Conceptually, the PP parsing rules can be seen as embedded 
within the following standard ‘outer loops’: 
 

while true do { 
   input packet; 
   header := first header; 
   while not done do { 
      apply rules for header; 
      header := next header; 
   } 
   output packet and results; 
} 

 
Thus, the PP description omits the standard control flow 
descriptions that would be needed in a typical programming 
language description.  The lack of user-specified administrative 
detail in PP makes it particularly appropriate for efficient 
implementation on target technologies that support parallel 
execution with streaming data flows. 
Section 2 of the paper introduces the PP language. 
 

1.2 FPGA Technology 
Traditional approaches to providing the required flexibility in 
packet parsing involve using general purpose servers as a basis for 
network nodes.  However, these may not be capable of providing 
the required performance.  To address this, the combination of 
general purpose processors and specialized high-performance 
network processors is possible.  However, the increasing 
specialization of network processors can thwart goals of flexibility 
and scalability.  The Field Programmable Gate Array (FPGA) is 
an alternative technology that can fulfill the necessary 
requirements for high-speed concurrent packet processing, and 
which can be harnessed in tandem with complementary general-
purpose processors. 
A simplistic view of an FPGA is that it just comprises a two-
dimensional array of programmable logic gates, together with 
programmable interconnection of logic gates to form logic 
circuitry.  However, the modern FPGA device is a very complex 
system on chip, including also memory blocks, multiplier-
accumulator units, and embedded processors, for example.  Thus, 
the FPGA is now a parallel assemblage of diverse programmable 
components, with a programmable interconnection network 
between these components.  The big challenge though is to make 
this raw computational substrate available for easy use by the 
networking system designer. 
The large, and increasing, sizes of the programmable logic array 
alone (for example, the largest devices now have over 2,000,000 
programmable logic cells) mean that circuit designs can be very 
complex.  Added to this is the further complexity of targeting the 
overall programmable system on chip capabilities.  Almost no-one 

now tackles implementation at the level of the basic FPGA 
capabilities.  The standard approach, reflecting hardware design in 
general, is to use hardware description languages, such as Verilog 
and VHDL, as a starting point.  While this is distinctly higher 
level than raw logic design, it is still hard and requires expert 
empathy with the technology, for example, through attention to 
timing detail and signaling detail.  This hardware haze obscures a 
higher-level view of the functions that are being implemented. 
A key feature of using PP is the much higher level of description 
language, supported by its efficient compilation to FPGA-based 
implementations.  The effect is to unveil the capabilities of the 
FPGA to the networking expert.  Section 3 of the paper describes 
a compiler that processes PP descriptions and generates high-
performance FPGA-based implementations that exploit the 
programmability of the technology.  These implementations 
include extremely wide (up to 2048-bit) parallel data paths for 
streaming packet data through heavily pipelined tailored function 
units. Section 4 of the paper describes the pipeline stage micro-
architecture, and how it can be reprogrammed while in operation, 
to allow dynamic modifications and upgrades reflected in changes 
to the original PP description. 
 

1.3 Benchmarking 
A benchmark suite of 10 examples described using PP was 
constructed, based on real requirements reported by a number of 
major telecommunication equipment vendors.  These include 
examples that are predominantly ‘layer 2’, including MPLS labels 
and Ethernet and VLAN headers, and also predominantly ‘layer 3 
and above’, including IPv4, IPv6, TCP, UDP and RTP headers.  
Section 5 of the paper introduces the suite, and includes a detailed 
explanation of the PP compilation process for one example. 
Experimental results are reported in Section 6.  These are all 
targeted at the Xilinx Virtex-7 HT FPGA device.  These results 
illustrate the scalability of the PP approach by showing that a 
wide range of packet throughputs can be obtained through varying 
the instructions given to the compiler.  In particular, the results 
show that 400 Gb/s throughput can be obtained (although, in fact, 
the parser is capable of a raw 600 Gb/s throughput).  The results 
also indicate scaling of the amount of FPGA resource required 
and the parsing latency, for the different throughputs. 
 

1.4 Remainder of Paper 
Section 7 contains a discussion of related work, and the paper 
closes with a summary of conclusions and future directions in 
Section 8. 
 

2. PP Language 
The Packet Parsing (PP) language treats packets in an object-
oriented style, in order to provide a familiar model for software 
engineers.  In a PP description, an object class is defined for each 
kind of packet header that is to be parsed.  Then the header stack 
of a packet is conceptually viewed as being a linked list of 
objects, one per header, the class of each object corresponding to 
the header type.  The definition of a class contains two parts: 

• A structure which defines the format of the header in 
terms of an ordered list of fields; and 

• A set of five standard methods (three optional) which 
define parsing rules for this header type. 
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The syntax of PP was minimized so that the user needs only write 
down what is required for packet parsing.  As an experiment, a 
sugared form of the language was strictly aligned with the Java 
syntax for class declarations, thereby providing embedding in a 
standard programming language.  However, typical descriptions 
were doubled in length, due to redundant features and verbose 
style. 

An example class declaration, for IPv4 header parsing, is: 

class IPv4 { 
   
  struct { version  : 4, 
           hdrLen   : 4, 
           tos      : 8, 
           length   : 16, 
           id       : 16, 
           flags    : 3, 
           offset   : 13, 
           ttl      : 8, 
           protocol : 8, 
           hdrChks  : 16, 
           srcAddr  : 32, 
           dstAddr  : 32, 
           options  : * 
  } 
   
  method next_header = protocol; 
  method header_size = hdrLen*32; 
  method key_builder =  
     {srcAddr, dstAddr, protocol}; 
  method earliest = 2; 
  /* method latest = OMITTED */ 
 
} 

 
Here, the struct part lists the well-known IPv4 header fields, 
with widths in bits, in transmission order.  The options field 
has a ‘wild card’ width, indicating that it is not statically 
determinable in advance. 

The two compulsory methods are next_header and 
header_size, which guide the parsing algorithm.  The 
next_header method computes the class of the next header to 
be parsed, as an unsigned integer value (here just the value of the 
protocol field). A special done() expression can be used to 
indicate completion of parsing. 

The header_size method computes the size in bits of the 
header being parsed, and thence the offset of the next header 
within the packet.  Here it is just the value of the hdrLen field 
(IPv4 header length in 32-bit words) multiplied by 32.  A special 
size() expression can be used to give the size of the header if it 
can be statically determined in advance.  It is easy to see how, 
together, these two methods can steer the parsing of a header 
stack. 

The final piece of describing the parsing algorithm is that the PP 
description must have a starting class and a starting offset.  If the 
former is not specified, then the first class appearing in the PP 
description is used.  If the latter is not specified, then a zero offset 
is used. 

The key_builder method is optional.  It is used to define a 
contribution to the parsing result from a header object.  This result 
is accumulated as parsing proceeds.  Here, the srcAddr, 

dstAddr and protocol fields are included.  For example, if 
followed by TCP header parsing that contributes source and 
destination port numbers, this would provide the basis for 
generating a standard TCP/IP five-tuple as a result of the packet 
parsing.  If no key building is included, then the default is to 
provide the final class number (i.e., packet header type) as a 
parsing result. 

The remaining two methods, earliest and latest, are 
optional assistance to the PP compiler.  These indicate the earliest 
and latest points, respectively, at which this header type can occur 
in a header stack.  Here, for example, the earliest method is 
giving the value 2, indicating that the IPv4 header will have at 
least one layer of encapsulation (e.g., within an Ethernet packet).  
For some PP descriptions, with very statically defined header 
formats and parsing rules, the PP compiler can work out earliest 
and latest values for each class.  However, in general, header 
stacks are dynamic on a per-packet basis. 

Although the right-hand sides of the method declarations in this 
example are very simple, PP allows arbitrary expressions, in terms 
of packet field values and constants, to be used for 
next_header, header_size, and key_builder.  These 
can be explicitly coerced to required bit widths, if necessary.  In 
particular, conditional if-then-else expressions are allowed in 
order to express more complex parsing behavior.  Instances of this 
can be seen in the benchmarking example presented in Section 5. 

Note that the current form of PP involves read-only access to 
packets.  In the future, it could be extended to include packet 
modification as a side effect of the parsing process. 

As stated in Section 1.1, and as can be seen from the overview 
provided here, PP descriptions are completely implementation 
independent, saying nothing about how packet data is presented 
for parsing, or how the parsing algorithm is implemented.  PP is 
thus suitable for either hardware or software implementation.  
Any additional implementation information is provided to a PP 
compiler, rather than being part of the PP description. 

3. Compiling PP to Programmable Logic 
The main goal for the FPGA-based parsing implementation was to 
achieve packet throughput in the 100s of Gb/s range, employing a 
scalable approach that would not require substantial re-
engineering with each new step in required throughput.  The 
physical constraints were the amount of programmable logic 
available on target FPGA devices, and the achievable clock rates 
for such logic.  The typical range for the latter is between 200 and 
400 MHz, assuming fairly careful logic design.  Because of this, it 
is necessary to use wide data paths, for example, a 512-bit or 
1024-bit data path width to obtain an overall 200 Gb/s data rate. 
The setting for the packet parsing module generated by the PP 
compiler is one involving the streaming of packet data through the 
module, using a very wide data path.  In some cases, this packet 
data might just consist of the relevant header part, following 
payload offload to temporary memory; in other cases, notably 
initial packet classification, this data is the entire packet.  The 
packet parsing is performed on the fly as the packets stream 
through.  In other words, the module has cut-through operation, 
rather than store and forward, which introduces higher packet 
processing latency. 
In order to achieve clock frequencies in the desired range, 
pipelining is deployed extensively in the packet parsing module 
generated by the compiler. 
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Figure 1. Packet parsing pipeline architecture 

 
Figure 1 shows the top-level architecture.  The two basic 
dimensions are the width of the packet data path (which 
determines the raw throughput), and the length of the parsing 
pipeline (which depends on the complexity of the parsing 
algorithm).  The PP compiler performs a natural mapping between 
the parsing algorithm and the pipeline: there is one pipeline stage 
for each level in a packet header stack.  That is, as a packet 
advances through the pipeline, one header is parsed at each stage.  
In steady state operation, multiple packets are being parsed 
simultaneously in the pipeline. 
To guide the basic architectural dimensioning, two parameters are 
supplied to the PP compiler by its user.  The first is a target 
throughput: this leads to selection of a data bus width based on 
expected clock frequency.  The second is a maximum parse depth 
(i.e., maximum header stack size): this leads to selection of the 
number of pipeline stages.  Based on an analysis of the PP 
description, the compiler determines which subset of the defined 
header types could occur at each of the pipeline stages.  User 
specification of earliest and/or latest methods within 
classes assists in this determination. 
After this analysis, the compiler generates pipeline stage 
implementations that are customized to handle precisely the right 
subset of headers.  When a packet enters a stage, it is 
accompanied by two critical pieces of control information.  The 
first identifies the header type to be parsed at that stage, and the 
second identifies the offset within the packet where parsing 
should start.  In terms of the PP description, these two values 
correspond to the next_header and header_size method 
results from the previous stage. 
Note that the pipeline width and length, and the contents of each 
pipeline stage, are fully customized for the particular parsing 

algorithm given in the PP description.  Creation of a bespoke 
virtual architecture is a significant feature of using programmable 
logic as the implementation medium.  This is in contrast to using 
ASSP, CPU, or NPU, technologies, where the non-trivial task is to 
map problem instances onto fixed architectures efficiently.  Here, 
the architecture is mapped on to the problem instance.  The results 
of this work, as reported in Section 6, indicate that the indirection 
through programmable logic does not impede the achievement of 
required performance.  Further, the precise architectural 
customization might reduce power consumption, through omitting 
redundant components that are present in ‘one size fits all’ fixed 
architectures. 
The basic function of each pipeline stage is to evaluate the 
expressions for the next_header, header_size, and (if 
present) key_builder, methods that feature in the class for the 
header type selected for parsing of the packet that is passing 
through this stage.  This involves obtaining the values of all the 
packet header fields that feature in these expressions, by 
extracting them from the wide words of the packet as they are 
streamed through the stage.  Note that individual fields may 
overlap one or more words, depending on the exact packet 
structure and its mapping onto the selected data path width.  
Multiple packets may also overlap in the same word, especially 
with very wide data buses.  For example, a 64-byte minimum-size 
Ethernet packet fits within a single 512-bit data path region. 
Each pipeline stage generated by the compiler contains 
customized logic to perform packet field extraction.  This involves 
counting until the first word of interest, and then shifting and 
masking to form each field value.  Note that these tasks are non-
trivial given the data path widths and the desired clock rates, and 
so careful logic design was necessary.  The stage also contains 
arithmetic logic to compute the expressions.  This is heavily 
pipelined, in order to maintain the necessary clock rate.  The 
extent of the pipelining depends on the complexity of the 
expressions.  In practice (as will be seen in Section 5), expressions 
tend to be relatively simple. 
The internal micro-architecture of a stage follows a standard 
template, connecting five basic components that incorporate the 
necessary customizations for that stage.  Using this template 
provides timing guarantees for the enclosed logic circuitry and, in 
addition, supports programmability of pipeline stages during 
operation.
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Figure 2. Micro-architecture of a parsing pipeline stage. 
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4. Parsing Pipeline Stage Micro-architecture 
Figure 2 shows the internal micro-architecture template for the 
pipeline stages generated by the PP compiler.  As indicated in 
Section 3, packet data enters the stage wordwise, and leaves the 
stage unchanged.  A header type value and a packet data offset 
enter the stage, and new values for both, computed using the 
methods defined for this header type, leave the stage.  Finally, an 
accumulated key value enters the stage, and an updated key value 
as specified by the key_builder method, leaves the stage. 

Functionally, a header parsing stage operates as follows.  When a 
packet starts to arrive at the input of a header parsing stage, it 
comes in tandem with the header type identifier, the offset in the 
data stream, and a key being constructed.  A header type lookup 
component uses the input header type identifier to fetch 
customized microcode that programs the remaining components 
in the stage to be able to handle the particular header type.  
Meanwhile, the input header offset within the packet stream is 
forwarded to a locate component that finds the header within the 
input packet stream.  The locate component works in tandem with 
an extract component that discovers header fields for use in 
parsing computations, and key building.  A compute component 
performs operations associated with the methods in the parsing 
description, such as computing the next header and the header 
size.  Results of the compute component can also be forwarded to 
an optional key builder component that constructs a revised 
parsing key.  Each of the five components is described in more 
detail in the sections that follow. 

One reason for using per-packet microcoding is to allow sharing 
of a common set of components in order to parse any of the 
header types that must be handled at a particular pipeline stage.  
This was chosen as a more resource-efficient alternative to having 
n sets of components, one set for each possible header type. 

4.1 Lookup Component 
The header type lookup component fetches microcode to then 
program the rest of the stage to handle the particular header type 
to be parsed.  The other main reason for using microcode in each 
parsing stage is to allow the packet parser to be modified while 
operating: to add, remove, and/or modify the particular header 
types that can be parsed in a stage.  This aspect is discussed 
further in Section 4.7. 
Microcode stores header offsets and sizes of fields to be extracted 
as part of computing the header object methods.  The microcode 
also stores information on what compute operations to perform 
and with what data.  Data can be sourced from packet fields or 
from constants embedded within the microcode.  Finally, the 
microcode additionally indicates whether to update the key result 
that is accumulated from stage to stage. 
Microcode is stored locally in a parsing stage for each possible 
header that can be parsed within that given stage.  Microcode 
cannot be shared across stages in general due to the fact that 
different sets of header types may be found in different parsing 
stages.  Different collections of header types result in different 
configurations of components within the parsing stage, which then 
each have unique microprogramming requirements. 
Depending on how many microcode entries exist in the header 
parsing stage and the size of each microcode entry, the lookup 
component will store and retrieve the microcode differently.  
When relatively few entries are required in a stage, microcode is 
simply stored locally in flip-flops.  Retrieval, then, is merely a 

matter of implementing a multiplexer.  When the number of 
header types parseable in the stage climbs, the associated 
microcode entries are more efficiently stored in block memory 
that is distributed throughout FPGA devices.  Retrieval from 
block memory amounts to simply providing an address, such as 
the unique identifier given to each header type.   

4.2 Locate Component 
Packet data streams through each parsing stage in a word-wise 
fashion.  It is the responsibility of the locate component to locate 
and deserialize the portion of a packet header that contains the 
fields required for computations within the stage.  The input 
header offset indicates where the header starts in the packet 
stream.  Microcode then provides the starting point within the 
header, and the size of the region containing the fields of interest. 
The locate component unpacks the header from the packet stream 
by handling data word boundary and alignment issues.  Since the 
word width of the streaming packet interface is a parameter to the 
PP compiler, the template for the locate component is 
configurable to support different data widths. 
Location of the header amounts to counting input words based on 
the starting point, and then accumulating the contents of as many 
words as are required to capture the fields of interest.  As an 
example, in the IPv4 parsing description shown in Section 2, the 
first required field is hdrLen and the last required field is 
dstAddr, and so a 156-bit section of the packet would be 
captured. 

4.3 Extract Component 
The extract component consists of a number of extraction units, 
one for each packet field that is required by computations within 
the stage.  Given that the stage must support a set of header types, 
the number of units required is determined by the header type that 
uses the largest number of fields.  The input to this component is 
the deserialized packet header segment produced by the locate 
component.  Microcode instructs each extraction unit on the offset 
and size of its field within this segment. 

The extraction is performed by a shifting and masking approach.  
The implementation of this is non-trivial though, given the need to 
cater for arbitrarily large offsets and field widths, and to maintain 
the desired clock rate.  A pipelined shifting approach was used, 
involving 16 choices of shift distance at each stage, the 
granularity of distance increasing by 16x at each stage.  For 
example, a 92-bit shift to extract the IPv4 srcAddr field from a 
156-bit segment would involve two successive shifts, by 12 and 
80 respectively. 

4.4 Compute Component 
The compute component consists of a number of compute units, 
one for each expression that is evaluated in the stage.  There are at 
least two units, one used for next_header method 
computation, the other used for header_size method 
computation, plus an additional number of units (possibly zero) 
required by the header type that has the largest key_builder 
tuple size.  Microcode instructs each unit on the expression to be 
evaluated, including the sources of its operands and its operators.  
The PP compiler optimizes each compute unit, and its microcode, 
so that it has precisely the minimal data path width and functional 
capabilities that are required to compute a particular method’s 
expression for all of the different header types that are supported 
at the pipeline stage. 
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Each compute unit is organized using pipelines for expression 
evaluation, with a single two-input arithmetic or logical operation 
being done at each stage.  The simple stages allow the desired 
clock frequency to be maintained.  The pipeline stages are 
organized to carry out a stack-based expression evaluation 
scheme.  An operand/result value stack is passed along the 
pipeline.  On entry, this contains all of the operand values for the 
expression and, on exit, this contains the result of evaluating the 
expression.  At each stage, the top two values are popped from the 
stack, combined with a two-input operation, and the result is 
pushed onto the stack.  Microcode selects the operator to be used 
at each stage, drawn from a range including addition, subtraction, 
shifting, comparisons, and bit-wise operations. 

When the definition of a method includes an if-then-else 
construct, evaluation of the result is done using three of the above 
pipelines in parallel.  One computes the if-condition, one 
computes the then-result, and the other computes the else-result.  
Note that both of these results are computed speculatively to 
reduce overall delays.  The choice between them to determine the 
final result is made by selection using the if-condition value. 

4.5 Key Builder Component 
Key building is an optional cumulative process along the parsing 
pipeline.  At each stage, if a header type that features a 
key_builder method is being parsed, then a set of expression 
results is appended to the key received from the previous stage.  
The final result from parsing is then a tuple of all the accumulated 
results.  The key is passed between stages as a single parallel 
word.  Microcode instructs the key builder on the number of 
values to be appended, and the sources of the values.  The latter 
sources are the outputs of the appropriate compute units within the 
compute component.  In many practical cases, as seen in the IPv4 
example of Section 2, the values are just packet field values, in 
which case no computation is required. 

4.6 Error and Exception Handling 
Parsing exceptions are expected to occur when handling live 
network traffic.  Malformed packets or packets with unrecognized 
headers are possible.  Errors and exceptions do not hinder the 
operation of the packet parser.  In such cases, the packet parser 
flags that an unparseable packet has been encountered, but packets 
that are flagged as suspect are still passed out of the pipeline along 
with an indication of where the error/exception condition 
occurred.  This takes the form of the header type and offset value 
at the time of the failure.  The expectation is that some 
downstream module will make a decision on the fate of these 
packets.  Header parsing stages transition to a pass-through mode 
when they see that an incoming packet already has an 
error/exception flag.  In this way, throughput is maintained and 
packets remain in exact input order. 
As a possible future feature, it would not be hard to add support 
for a compiler option calling for unparseable packets to be 
dropped within the parser module. 

4.7 Programmability 
As seen in Sections 4.1 to 4.5, microcode instructions are used 
extensively to control the behavior of the five components within 
each parsing pipeline stage.  This allows the same set of resources 
to be shared for each of the different header types being processed 
by a stage.  The exact microcode format is specific to the set of 
components contained in a particular stage.  The size of the stored 
microcode depends on the complexity of the components. 

 
 

Figure 3. Pipeline stage microcode organization 

The general format of the microcode is shown in Figure 3.  It 
consists of four sections.  The first section consists of zero or 
more extract size-offset pairs.  These correspond to different fields 
that may be extracted from the packet in order to parse a header.  
The size indicates the bit width of the field, and the offset 
indicates its bit position from the start of the header segment.  The 
second section consists of compute operations and input selectors.  
One compute operation entry exists for each stage in a compute 
unit pipeline.  The supported operations are encoded as unique 
integer identifiers.  The compute input selectors program a 
multiplexer to enable the appropriate inputs to reach a compute 
unit.  Multiplexer inputs could be the different extracted fields or 
constants from the microcode.  The third section consists of zero 
or more sources for data to be appended to the packet's context 
key.  The final section consists of constants, occurring in the 
header object description and then used directly in computations.  
Constants can be of variable size.   
The overall PP programming approach involves generating 
customized parsing pipelines from a PP description.  The use of 
microcode enables later parsing algorithm changes without 
necessarily generating a new microarchitecture.  For example, 
modifications to the method definitions for existing header types 
may be accommodated unless they involve significantly more 
complex expressions than the existing extract or compute 
components can support.  Also, addition of new header types, 
with methods of similar complexity to existing methods, is 
possible.  Clearly, removal of particular header types, or 
simplification of methods, is easy to accommodate.  It is possible 
for the PP compiler to over-provision a generated 
microarchitecture, thus leaving some spare capacity for later 
parsing updates. 

5. Benchmark Suite 
A main motivation for this research came from 
telecommunication equipment providers interested in the use of 
FPGA technology to provide high-performance, yet highly-
programmable, packet parsing.  The requirement was to provide 
an open-ended, high-level way to describe packet parsing 
algorithms, and to allow in-operation updates without FPGA 
circuitry changes.  PP was the resulting solution to these needs.  
The benchmark suite was drawn from examples required in 
practical networking situations.  These fall into two broad 
categories: carrier (wide area and metro area networks), and end 
system (access and enterprise settings).  In turn, these categories 
correspond to layer-two and below, and layer-three and above, 
protocol settings respectively. 

Size

Size Offset
ExtractExtract

InputOp
Compute Compute

Op
Key

Constant

Key
Source

Source
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The following 10 examples were included: 

• JustEth: searches Ethernet frames for the type 
field – the  baseline example. 

• VlanAndMpls: handles Ethernet with VLAN and 
MPLS encapsulation. 

• AllStack: handles a combination of VLAN and 
MPLS stacking, and continues through the header 
stack into IPv4 or IPv6, then TCP or UDP. 

• ArpIcmp: handles ARP and ICMP over Ethernet. 
• TcpIp4:  handles TCP within IP version 4. 
• TcpIp6: handles TCP within IP version 6. 
• TcpIp4andIp6: handles TCP within IP version 4 

or IP version 6. 
• RtpIp4: handles RTP protocol within UDP within 

IP version 4. 
• RtpIp6: handles RTP protocol within UDP within 

IP version 6. 
• RtpIp4andIp6: handles RTP protocol within 

UDP within IP version 4 or IP version 6. 

The parsing result varies between examples.  In the first two, the 
result is a 16-bit standard Ethernet type field and offset for the 
next encapsulated header.  In the next two examples, and the final 
three examples, the result is the unearthing of the data payload 
offset.  In the remaining three examples, the result is a TCP/IP 
five-tuple. 

Figure 4 shows the complete PP description for the second 
example.  It is drawn from a Carrier Ethernet setting, where an 
MPLS frame, with some number of MPLS tags, is used to carry 
an Ethernet frame that can optionally contain some number of 
VLAN (Virtual LAN) headers.  The goal is to reveal the packet 
being carried within the overall encapsulation: its type, and its 
offset within the overall packet.  This information can then be 
used for packet classification based on content. 

The description contains three classes: for MPLS, Ethernet, and 
VLAN.  The #define statements at the beginning make a 
simplifying connection between the internal values used to 
identify header types and actual values used by the standard IEEE 
16-bit type numbering scheme. 

Within each class, the struct part shows the familiar formats 
for each of these packet header types.  The methods then express 
the parsing algorithm.  Note that the parse will start by default 
with the MPLS class since it appears first.  In all three classes, the 
next_offset method just returns the size() value, which is 
the length of the current header (32, 112, or 32 bits respectively).  
Also, these classes contain no key_builder methods, meaning 
that the parsing result will just be the final next header  type value 
from the parsing chain. 

The next_header method in the MPLS_TYPE class expresses 
the fact that there will be some number of MPLS tags with the S 
(bottom of stack) bit equal to zero, followed by the final tag with 
the S bit set to one.  At this point, an Ethernet frame will be 
expected.  Note that the MPLS tag format does not include an 
explicit indication of the type of the MPLS payload. 

Then, the next_header method in the ETH_TYPE class just 
takes the type field from the Ethernet header  in order to 
determine the next header type to be parsed.   

#define MPLS_TYPE  0x8847 
#define ETH_TYPE      0x0001 
#define VLAN_TYPE 0x8100 
 
class MPLS_TYPE { 
  struct {  
    label : 20, 
    cos   : 3, 
    sBit  : 1, 
    ttl   : 8 
  } 
  method next_header =  
    if (sBit == 0) 
      MPLS_TYPE; 
    else 
      ETH_TYPE; 
  method next_offset = size(); 
} 
 
class ETH_TYPE { 
  struct {  
    dmac : 48, 
    smac : 48, 
    type : 16 
  } 
  method next_header = type; 
  method next_offset = size(); 
} 
 
class VLAN_TYPE { 
  struct {  
    pcp : 3, 
    cfi : 1, 
    vid : 12, 
    tpid : 16 
  } 
  method next_header = 
    if (tpid == VLAN_TYPE) 
      tpid; 
    else 
      done(tpid); 
  method next_offset = size(); 
} 

 

Figure 4. PP source code for VlanAndMpls example  

 
At this point, the parse will fail unless this value is equal to one of 
the three values that have corresponding classes in the PP 
description.  For more safety, an alternative here would be to 
check explicitly that type is equal to VLAN_type. 

Finally, the next_header method in the VLAN_TYPE class 
expresses the fact that there will be some number of VLAN tags 
with their tpid field indicating a further VLAN tag within, 
followed by the final tag with a tpid field indicating something 
different.  At this point, the special done() function is used to 
indicate that parsing is complete, its argument being the 
next_header result. 

The PP compiler can infer from the description that the MPLS, 
Ethernet, and VLAN, classes can occur earliest at the first, 
second, and third places in the header stack respectively.  It 
cannot infer anything about their latest positions in the stack.  
Thus, the generated parsing pipeline has appropriate provisioning  
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Table 1. Benchmark results for 1024-bit data path 

 Resource 
utilization 
(% FPGA) 

Clock 
period 
(ns) 

Raw 
T’put 
(Gb/s) 

Total 
latency 
(ns) 

JustEth 9.2 2.985 343 293 

VlanAndMpls 11.0 2.999 341 309 

AllStack 11.5 3.389 302 349 

ArpICMP 14.9 3.345 306 495 

TcpIp4 12.1 2.984 343 292 

TcpIp6 9.9 2.987 343 293 

TcpIP4andIP6 12.4 3.154 325 309 

RtpIp4 12.6 3.078 333 348 

RtpIp6 10.8 3.133 327 354 

RtpIp4andIp6 13.0 3.131 327 354 

 

for the possible sets of header types in its stages.  In particular, all 
stages from the third onward have provisioning for all three 
header types. 

In this example, the expressions occurring in the methods for each 
class only require one packet field each time, and so the generated 
extract component at each stage has only one extract unit, which 
has an extractee width of 16 bits.  Since the method expressions 
are simple, the compute component only requires one compute 
unit that can perform an equality comparison operation, plus one 
if-then-else parallel compute unit.  These all have widths of 16 
bits, since all operands and results have this width.  The three 
respective size() ‘function calls’ just involve the insertion of 
compile-time constants into the compute component microcode. 

The microcode word size for the three-header type stage was 136 
bits, giving a total storage requirement of 408 bits at each stage, 
which can easily be provided by local storage in flip-flops.  In fact 
the range of microcode word sizes over the benchmark suite was 
from 40 bits (JustEth) to 372 bits (ArpIcmp), the average being 
140 bits.  

To illustrate possible re-programmability without the need to 
change the generated pipeline architecture, it can be seen that the 
above suggestion of including a conditional test on the type value 
during Ethernet header parsing could be added by microcode 
update, given the availability of a spare if-then-else capability in 
the compute component. 

6. Experimental Results 
The examples in the benchmark suite were implemented for the 
Xilinx Virtex-7 870HT FPGA.  This FPGA was chosen because it 
includes 16 28 Gb/s and 72 13.1 Gb/s serial transceivers.  Thus, 
one future setting for the parser would be with packet input via a 
400 Gb/s Ethernet MAC attached to 16 28 Gb/s transceivers, and 
packet output via a 600 Gb/s Interlaken interface attached to 48 
12.5 Gb/s transceivers.  The FPGA contains 136,900 ‘slices’, each 
containing four six-input lookup tables (LUTs) and eight flip-
flops (FFs). 

The PP compiler generates a description of the customized 
pipeline parsing architecture in either VHDL or Verilog  hardware  

Table 2. Benchmark results for 2048-bit data path 

 Resource 
utilization 
(% FPGA) 

Clock 
period 
(ns) 

Raw 
T’put 
(Gb/s) 

Total 
latency 
(ns) 

JustEth 17.2 2.983 687 292 

VlanAndMpls 18.9 3.068 668 316 

AllStack 22.7 3.542 578 365 

ArpICMP 23.1 3.648 561 540 

TcpIp4 20.9 3.117 657 305 

TcpIp6 17.7 3.338 614 327 

TcpIP4andIP6 21.0 3.243 632 318 

RtpIp4 22.2 3.468 591 392 

RtpIp6 19.0 2.992 685 338 

RtpIp4andIp6 22.6 3.205 639 362 

 

description language, VHDL being chosen here.  These 
descriptions were then processed by the standard Xilinx ISE 13.1 
design tool suite, which performed synthesis, placement, routing, 
and bitstream (FPGA physical programming information) 
generation.  A feature of the PP design environment is that, when 
the complete FPGA implementation process has been done once, 
it indicates whether subsequent modifications to the parsing 
algorithm can be implemented just by making microcode updates, 
or whether a revised architecture has to be generated.  The PP 
environment includes a software driver that is used to write to 
microcode memory on the FPGA.  The correctness of the FPGA 
implementations was validated using simulation of the (pending) 
Virtex-7 FPGA and a surrounding 400 Gb/s networking setting. 

For all the experiments, a maximum parsing depth of five headers 
was specified to the PP compiler, this being enough to be realistic 
for all of the examples.  A range of target throughputs was 
requested, to explore the scalability of the approach.  These 
translated into different data path widths in the parsing pipeline 
architecture.  The FPGA resource utilizations, and achieved 
performance, were measured.  

Tables 1 and 2 contain experimental results for 1024-bit and 
2048-bit data paths, respectively.  The first column shows FPGA 
resource utilization, in terms of the percentage of the Virtex-7 
870HT slices used for the implementation.  Estimates for the 
combined sizes of future 400 Gb/s Ethernet MAC and 600 Gb/s 
Interlaken interface blocks are approximately 65% of this FPGA, 
and so a combined bridging and parsing subsystem contained on a 
single Virtex-7 family FPGA is practicable. 

The clock periods shown in the second column translate into clock 
rates of between 274 and 335 MHz, which is in the range that the 
carefully pipelined architecture was designed to guarantee.  These 
clock rates then translate into the raw throughput shown in the 
third column, obtained by multiplying by the data path width.  It 
can be seen that the 1024-bit data path gives results just below the 
‘headline rate’ of 400 Gb/s, whereas the 2048-bit data path gives 
results well above this.  However, caution must be taken with 
these raw throughput figures, as the effect of short packets and 
quantization over a wide word size must be taken into account. 
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Figure 5. Resource utilization versus data path width  

 
Figure 6. Raw throughput versus data path width 

 
Figure 7. Total latency versus data path width
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For example, if only one packet per word is allowed, then a series 
of minimum-size 64-byte Ethernet packets would only occupy 
25% of the 2048-bit data path width, sharply reducing the real 
throughput. 

To guarantee full 400 Gb/s data throughput for minimum-size 
Ethernet packets, that is, handling 600 million packets per second, 
one solution is to divide the 2048-bit wide data path into eight 
256-bit logical lanes, allowing a new packet to start in alignment 
with any lane.  With this arrangement, a maximum of four packets 
might be in flight during one word time, which can be handled 
directly using four parallel copies of the parsing pipeline.  For the 
benchmark examples, this parallel solution, with an Interlaken 
interface, would suit a Xilinx Virtex-7 1140XT FPGA. 
The final column in the tables shows the latency of the packet 
parsing.  Because of the basic pipeline architecture, the latency is 
essentially directly proportional to the selected parsing depth, 
which was fixed as five in these experiments.  The average 
latency per header parsed was between 58 and 108 ns in the 2048-
bit data path case. This latency represents a trade-off against the 
need for high throughput, achieved by the use of large-scale 
pipelining.  Note that the latency does not introduce any need for 
temporary packet buffering elsewhere outside the parsing module, 
since the packets are stored in a distributed manner as they pass 
through the parsing pipeline.  The latencies reported here are 
deterministic, and are acceptable for various practical scenarios 
within future high-throughput telecommunications equipment. 
Figures 5, 6, and 7 show experimental results across a wider range 
of data path widths: 64, 128, 256, 512, 1024, and 2048.  These 
demonstrate the scalability of the PP approach, since the different 
implementations were all derived by compiling the same PP 
descriptions.  At the low end of the scale, these results show that a 
64-bit data path can supply 20 Gb/s packet throughput using 
relatively modest FPGA resources.  It can be seen that resource 
usage does not double with each doubling of the data path width, 
indeed increases with a much less steep linear function.  This is 
because the bulk of the resource is consumed by the compute 
components.  Since these operate on narrow operands, extracted 
from the very wide data path, they remain the same size with 
upwards scaling. 
The throughput increases in step with the data path width 
increases, as intended.  This is a little less than doubling with each 
width doubling and shows increasing variability between 
examples, because of more challenging layout of wide data paths 
on the FPGA that results in some reduction in the achievable 
clock rate.  The latency remains largely flat with increasing data 
path width, essentially because the extent of pipelining remains 
the same for all data path widths above the 512-bit data width 
threshold. 

A further experiment used a data path width of 4096, which gave 
results consistent with scaling upwards further.  However, as 
discussed earlier, the multiple packet per word problem is more 
acute here, and requires further mechanisms.  This is a matter that 
will be addressed in future work. 

 

7. Related Work 
There are three main areas of prior work relating to this research: 
technologies for packet processing at rates up to 100 Gb/s; packet 
lookup and classification; and languages for packet processing 
and/or targeting programmable logic. 

Karras et al. [11] present a folded pipeline architecture for 100 
Gb/s carrier networking, handling both MPLS labels and PBB 
Carrier Ethernet.  Wu et al. [28] discuss the simplification of data 
path processing in next generation routers.  Mudigonda et al. [20] 
discuss the impact of the ‘memory wall’ on high-speed packet 
processing.  Current specialized commercial devices extend to 40 
Gb/s rates, for example the NetLogic knowledge-based processor 
families [23], or the Cavium multi-core processor plus 
acceleration families [5].  The latest NetFPGA platform [22] 
supports FPGA-based networking research at up to 40 Gb/s rates. 
An increasingly important topic is the introduction of new 
protocols into networking equipment.  Anwer et al. [1] describe 
Switchblade, a platform for rapid deployment of network 
protocols on programmable hardware.  Carli et al. [4] describe 
PLUG, a means for deploying flexible lookup modules in high-
speed routers.  OpenFlow [21] provides an open framework for 
enhancing packet routers. 
Kobiersky et al. [13] utilize an XML description to auto-generate 
finite state machines for protocol handling at up to 20 Gb/s rates.  
The XML enumerates the FSM transitions, one per possible 
parsing path.  Packets are streamed through the system, and each 
byte is checked for relevant fields to extract.  A concern with this 
work is scalability.  The use of a crossbar in the extraction unit 
will have difficulty scaling with increasing data path widths.  
Additionally, when a larger number of protocols are to be 
handled, the generated state machine could become a performance 
bottleneck.   
The Kangaroo packet parsing architecture of Kozanitis et al. [15] 
can deal with 40 Gb/s line rates.  It utilizes a TCAM to enable 
speculative fetching of pre-defined offsets in a packet.  Based on 
which TCAM entry matches, the packet format is known.  The 
TCAM entry returns the next instruction to perform.  Packets are 
stored in memory, and instructions dictate packet fields to be 
fetched from the stored packet.  The lookahead stride for 
protocols to handle is, therefore, limited by how many fields must 
be fetched from the memory subsystem.  An offline algorithm is 
used to construct the TCAM entries.   
Most published research on packet classification has focused on 
two other topics, IP address lookup for routing and matching 
against rule sets, with initial packet parsing presumed done in 
advance.  Prasanna et al. [10,17,29] have demonstrated IP address 
lookup at up to 100 Gb/s rates using FPGA implementation; other 
IP address lookup research includes [16,18,25,27].  Packet 
matching research is typically based on the Snort [2] rule-based 
intrusion detection technology.  Examples of packet classification 
that match against rule sets at up to 20 Gb/s rates include 
[12,19,26]. 
A number of domain-specific programming languages for packet 
processing have been proposed, albeit not usually targeted for 
programmable logic, for example, Baker [6], FPL [7], and 
PacketC [9].  Click [14] is well-known as a system for building 
software routers.  Rubow et al. [24] show an environment for 
targeting programmable logic using a Click approach.  Brebner 
[3] introduced the G language for packet inspection and editing, 
targeted at FPGA implementation at up to 20 Gb/s data rates. 
There has been considerable research into high-level synthesis, 
i.e., mapping general-purpose languages (usually C or C++ based) 
onto programmable logic.  Much of this concerns efficient loop 
unrolling to form pipelines.  For example, Cong and Zou [8] have 
studied dynamic nested loops.  This work has most application in 
digital signal processing rather than packet processing. 
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8. Conclusions and future work 
Overall, the experimental results confirm that the modern FPGA 
possesses sufficient programmable computational capabilities to 
process packets at very high line rates.  The research in particular 
shows that this raw, distributed, and fine-grain power can be 
harnessed by the networking expert, through the automatic 
building of customized packet processing architectures, driven by 
high-level domain-specific programming descriptions. 
The larger context for this research is to embed the packet parsing 
capability within a complete network processing system.  The first 
step (already demonstrated at a 100 Gb/s line rate) is coupling the 
parsing module with a key lookup module, in order to perform 
complete packet classification.  The latter module was also 
generated automatically from a high-level description, employing 
a number of heavily pipelined architecture templates based on the 
pioneering work of Prasanna et al.  In turn, this packet 
classification subsystem is being coupled with a traffic 
management subsystem, to demonstrate a complete 400 Gb/s 
network processor using a dual Xilinx Virtex-7 implementation. 
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