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Abstract— Packet classification is a very important component for 
today’s network architecture. It can help or provide packet forwarding 
and other network functions. With the development of Internet and the 
emergence of software-defined networking (SDN), the methods 
designed for the traditional 5-dimensional rule set is not sufficient to 
process the current rule set that contains rules of 12 or more 
dimensions. The main problem is to process the rule sets of 12 or more 
dimensions in high throughput. To achieve high throughput, we study 
the implementations on GPU where some use a single hash table and 
others use Binary Range Tree to process the searching. In 12-
dimensional rule sets defined by OpenFlow 1.0, 8 fields are in the 
format of exact value or wildcard, and so using the single hash table or 
binary range tree is not efficient. Another problem to implement packet 
classification on GPU is that we must transfer the input data and results 
via the PCI-E bus that will incur long bus latency. In this paper, we 
propose a modified hash table to process the fields that contain only 
exact value or wildcard, and use the compressing method to reduce 
memory consumption. On the other hand, we implement the proposed 
method on APU that uses Heterogeneous System Architecture to skip 
the bus latency. According to the experimental results on AMD A10-
7850 APU, our method can achieve the throughput of 1814 MPPS, and 
can support the rule sets of more than 12K 12-dimensional rules. The 
achieved throughput is 10 times of the methods on legacy GPU. 

Keyword: Packet Classification; OpenFlow; APU; GPU; Hash Table 

I. INTRODUCTION 
The responsible device for forwarding packets over 

networks is called router and switch. These devices will fetch 
the header information of the packets, and analyze the 
information to determine where or which port to send out these 
packets. These actions will be repeated until the packet have 
reached its destination node. Today’s routers and switches 
support not only forwarding packets, but also Quality of Service 
(QoS), firewall, traffic control, or virtual private network (VPN) 
and more applications. 

Packet classification is a method to determine what actions 
to be applied on the input packets where actions are predefined 
in the rule sets. The input packet may match one or more rules. 
We select the rule with highest priority to apply its actions on 
the input packets. 

Several differences between traditional 5-dimensional 
packet classification and OpenFlow packet classification are 
mainly in the number of fields in a rule and the type of fields. 
Eight of the 12 fields in OpenFlow 1.0 are exact values or 
wildcard and so using the traditional packet classification 
methods to process these fields is not efficient. 

We proposed a scheme to speed up the fields processing of 
exact values. The scheme can be used as an accelerator for 
traditional packet classification method. By combining this 
scheme and traditional packet classification method, the 
switches can achieve very high speed for both traditional and 
OpenFlow rules. 

The rest of this paper is organized as follows. In section II, 
we introduce work related to packet classification. Section III 
introduces the proposed scheme that is 3-Layer Hash Tree, this 
is a Decision-tree based algorithm, and add hashing method to 
process the fields with exact values. The experimental 
simulation and comparisons with many existing state-of-art 
implementatons are shown in section IV. Section V concludes 
the paper. 

II. RELATED WORK 

A. OpenFlow Rule Table 
OpenFlow switches contain a set of flow tables, and each 

flow table contains a set of rules. The rule sets are used to 
classify the packets. A rule is said to be a match if all the fields 
of the rule match the header values of the incoming packet. 

In OpenFlow version 1.0, the flow table contains 12 fields 
including 5 traditional packet classification fields that are 
source/destination IP addresses (32), source/destination 
transport ports (16), and IP protocol (8) and 7 additional fields 
that are ingress port (6), MAC source/destination addresses (48), 
Ethernet type (16), VLAN ID (12), VLAN priority (3), and IP 
ToS (6), where the numbers in parentheses are the bit counts. 
Totally, each entry needs 243 bits. The source/destination IP 
address fields are of type prefix, the source/destination transport 
port fields are of type range, and other 8 fields are of type 
singleton. The current version of OpenFlow is 1.5.1 [23]. 
However, version 1.6 has been available since September 2016, 
but accessible only to ONF's members. The proposed hash based 
scheme used OpenFlow 1.0 as a test example and can be easily 
extended to later versions. 

B. Bloom Filter 
Bloom Filter first described by Bloom in 1970 is a high 

space-efficient data structure. It can be used to check if an 
element is in a set or not. It has high space efficiency and 
constant lookup time, both are much better than normal 
algorithm. It may has false positive matches, but does not have 
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false negatives. Another disadvantage of Bloom filter is that it 
is difficult to delete an element. 

 If we want to check an element is in a set or not, the 
simplest method is storing all the elements in the set, and 
compare all elements to check. We can use Tree, Linked-list or 
hash table to implement this method. When the number of 
elements increases, the memory consumption also increases, 
and so the speed of searching will slow down. 

The basic idea of Bloom Filter is, when an element is added 
in to a set, we use N hash functions to generate N locations in a 
bitmap, and then set all of them to one. When searching the 
element, we just need to check whether all the corresponding 
locations are one or not. If they are all ones, it is likely that the 
element exists in the set. Otherwise, if one or more of the 
locations are zeros, it is impossible that the element exist in the 
set. Therefore, we can use Bloom filter as a pre-classifier. 

C. Accelerated Processing Unit (APU) 
In the legacy x86 PC architecture, Central Processing Unit 

(CPU) and Graphics Processing Unit (GPU) are independent, 
the communication between them goes through PCI Express bus. 
Advanced Micro Devices (AMD) published a new type 
processor named Accelerated Processing Unit (APU) that 
combines CPU and GPU into a single chip and share the main 
memory.  

In the legacy architecture, when we use GPU to perform the 
computing, we need to copy the input data from the main 
memory to the GPU memory, and copy the results back from 
GPU memory to main memory. By the experimental results, we 
can see that the action of copying the data back and forth 
between main memory and GPU memory is the main bottleneck 
for the packet classification problem. 

D. Heterogeneous System Architecture (HSA) 
Heterogeneous System Architecture (HSA) is an 

architecture defined and developed by HSA foundation, formed 
by vendors like AMD, ARM, Qualcomm, Samsung, and MTK. 
HSA is an architecture in which CPU and GPU share the bus, 
memory and process. The original target is to resolve the 
problem of the communication latency between GPU, CPU and 
other processors. It can also provide better compatibility 
between different hardware platform (better than CUDA and 
OpenCL). Heterogeneous computing has been widely used in 
system-on-chip devices, such as video game consoles. For 
example, Sony PlayStation 4 uses the customized AMD APU, 
the CPU and GPU on the APU share the 8GB GDDR5 memory. 

This architecture is first used in the Cell Broadband Engine 
Architecture. Heterogeneous System Architecture standard 
contains not only the CPUs and GPUs, it can also uses digital 
signal processors (DSPs), application-specific integrated circuits 
(ASICs) or Field-programmable gate array (FPGA) to build the 
system. This architecture allows any type of accelerator to 
operate at the same level as the CPU. 

To achieve the feature that all processors can share the 
memory space, HSA standard defines a unified virtual address 
space (VAS) for the processors. On the APU without HSA, the  
GPU has its own memory space separated from main memory, 

if we want to support HSA, we need to share the page tables 
between GPU and CPU, then the GPU and CPU can transfer data 
by sharing pointers. For AMD APU, this feature is achieved by 
I/O memory management units (IOMMU). 

As of June 2016, on x86 PC platform, only AMD’s “Kaveri” 
APU's and Carrizo APU's can support HAS and on other 
platform, the customized APU of Sony’s PlayStation 4 and 
ARM's “Bifrost” Mali GPU can support HSA. Except supported 
by hardware, the HSA needs to be supported by the operating 
system and device driver. For example, if we use the AMP 
“Kaveri” APU, it supports HSA, but we also need to install 
kernel module, driver, and runtime software to run the HSA 
program. 

III. PROPOSED SCHEME 
The proposed scheme is called 3-Layer Hash Tree that is a 

Decision-tree based data structure extended by adding hashing 
to process the fields with exact values. Because these fields 
contains only exact value or wildcard, we can simply group the 
rules with same type into a group, and each group has its own 
hash table. To determine how many hash tables to store the 
information of rules, we must calculate the type number first. 
Because the rules contains only exact value or wildcard, it 
means we need 2n hash tables if the layer contains n fields. For 
example, in our proposed scheme, Layer 1 contains two fields 
(destination MAC address and source MAC address), so we 
need 22= 4 hash tables to store the rule information. Layer 3 
contains 3 fields, ingress port, Ethernet type and VLAN ID and 
so we need 23=8 hash tables to store rule information. 

To speed up the searching in 3-Layer Hash Tree, we use a 
Bloom filter phase to detect the tables which contains no target 
information, and so we can skip the searching operations for 
these tables to speed up the classification. 

The L1 node consists of a Bloom filter phase and 4 hash 
tables. This Bloom filter phase is used as a pre-classifier for L1 
hash tables. The hash tables use source MAC and destination 
MAC to build the hash tables. Similarly, the L2 node consists 
of a Bloom filter phase and 8 hash tables, where ingress port, 
Ethernet type and VLAN ID fields are used to build the hash 
tables. This Bloom filter phase is used as a pre-classifier for L2 
hash tables. In the L3 node, there is a hash table with perfect 
hashing function. The hash tables use 2 fields to hash, VLAN 
priority and IP ToS. 

We also use Cache table to speed up the process for the 
packets that have been received before. Searching the cache that 
only needs one memory access is much faster than searching 
the 3-Layer Hash Tree.  

In the OpenFlow rule table, there are two types of rules, 
microflow and macroflow. Microflow is the rules that have 
exact values in all 12 fields. However, macroflow rules may 
contain non-exact values in some fields. Using a single hash 
table to process microflow rules is more efficient than using the 
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3-Layer Hash Tree, so we split the rules into two parts, one 
contains microflow rules and another one contains macroflow 
rules. We use a single table to process the microflow table and 
use the 3-Layer Hash Tree to process the macroflow table.  

A. Bloom Filter and Possibility Bitmap 
The Bloom filter phase as shown in Figure 2 contains a main 

bloom filter, two 4-bit possibility bitmaps and a 4-bit ignoring 
flag. We use 2 hash functions based on field 11 (3-bit VLAN 
priority) and field 12 (6-bit IP ToS) as input data. 

When both the bit positions in main bloom filter computed 
by these 2 hash functions are 1, there must exist at least one rule 
that will match the corresponding header values of the incoming 
packet. Then, we retrieve two 4-bit possibility bitmaps.  

Assume the bit positions computed by two hash functions 
are 0 and 1023, respectively and both bit positions are 1. Then 
we will get two 4-bit bitmaps, 1111 and 0001 that will be 
ANDed to obtain the final result, 0001. The reason that the 
bitmap is 4 bits comes from the rule grouping scheme based on 
source and destination MAC addresses of the rules as follows.  
The rules with source and destination MAC addresses being 
both equal to wildcard and wildcard, wildcard and exact value, 
exact value and wildcard, and exact value and exact value are 
put in group 0, 1, 2, 3, respectively. As a result, if the final 4-bit 
bitmap is 0001, only the group 3 needs to be search. The rules 
in groups 1, 2, or 3 are further divided into 216 subgroups based 
on source and destination MAC addresses by using an array of 
216 pointers pointing to the next layer structure (L2 node) of 
these subgroups. 

The function of these three hash tables is 16-bit XOR 
folding that divides the 48-bit MAC address into three 16-bit 
sub-addresses and performs XOR operation. For example, if we 
get a hashing result 32,768, then we know that we have to store 
the rule in the L2 node pointed to by the 32768th pointer of the 
hash table. 

The 4-bit ignoring flag records which tables contain the 
rules with wildcards both in field 11 and 12 because the main 
Bloom filter is useless for this kind of rules. If the ith bit of the 
4-bit ignoring flag is set to 1, it means the ith table contains the 
rule that field 11 and 12 are both wildcard, and we must search 
this table by ignoring the bitmap computed by the main Bloom 
filter and possibility bitmaps. 

The bloom filter and hash tables in Layer 2 are also based 
on VLAN priority and IP ToS, which is similar to Layer 1. But 
the possibility bitmap and ignoring flag are 8 bits because fields 
6-bit ingress port, 16-bit Ethernet type and 12-bit VLAN ID are 
used for creating eight hash tables. 

We use 3 bits to represent which field value of a rule is 
wildcard by mapping bit 2 to ingress port field, bit 1 to Ethernet 
type field, and bit 0 to VLAN ID field.  For example, if a rule 
has exact values in the fields of ingress port and Ethernet type 
and wildcards in VLAN ID field, it belongs to group 6 (110).  

The size of hash table is 4096, and each entry is a pointer 
that points to an L3 node. The hash function uses a 12-bit XOR 
folding hashing function based on ingress port, Ethernet type, 
and VLAN priority.  

In L3 node, we have a hash table with perfect hashing table 
(direct expansion) of size 512. Each entry stores a pointer to a 
bucket of rules. If there are wildcards in field 11 or field 12, we 
must duplicate the rule into multiple buckets. 

B. Compress L2 hash table 
Because the L2 tables waste too many entries to store null 

pointers, it uses about 1GB memory, about 97% of total 
memory consumption of the 3-Layer Hash Tree, so we propose 
a method to compress L2 tables. 

The basic idea is to store only the pointers that point to exist 
L3 nodes, and remove the null pointers. We use an array of size 
k pointers where k is the number of non-NULL pointers in the 
original hash table. We also need a 4096-bit bitmap to record 
the positions of original hash table corresponding to those non-
NULL pointers. 

C. Cache and MicroFlow table 
According to the experimental results of [17], 35 percent of 

flows contains 95 percent of packets. In other words, we can 
store the 35% flows in one single hash table, and this hash table 
can process 95% of input packets without searching the 3-Layer 

Figure 2. Bloom filter phase. 

Hit in bloom filter

Merge with ignoring flag 

Main Bloom Filter 

Packet in
miss

Possibility Bitmap 

Ignoring Flag

Get possibility bitmap (4bits)

Continue to hash table phase
Get bitmap result

Figure 1. The 3-Layer Hash Tree. 

L3 Node 

Cache table

Microflow table 

L2 Node 

L3 Node L3 Node 

L1 Node 

Hash Table phase 

Bloom filter phase 

L2 Node 

Hash Table phase 

Bloom filter phase 

L2 Node 

L3 Node

302



Hash Tree. This hash table is called “Cache” and it can reduce 
a lot of packet classification time. In our scheme, the size of 
cache hash table is 1024, and use first in first out (FIFO) as 
cache replacement algorithm. We use this cache to classify the 
packets, if the packets are hit in the cache, we directly return the 
result. If the packets are miss in the cache, we push these into a 
queue of the 3-Layer Hash Tree, once the number of packets in 
the queue is equal or more than 512, we send first 512 packets 
of the queue into the GPU to search for result. The batch size is 
set to 512 because the limit of parallel threads on the APU is 
512. 

MicroFlow is a type of flow rules that have all fields with 
exact value. So, we can use a simple hash table to store and 
classify this type of rules, and this method also only needs one 
memory access to search the target entry. In our scheme, the 
maximum size of microFlow table is 65,536. 

On the other hand, because of the high collision rate of 
traditional hashing method, we use the Cuckoo Hashing to 
replace traditional hashing method. With the Cuckoo Hashing, 
we can reduce the collision rate to less than 0.01%. In our 
experiment, we use a microflow table of 50K rules, and no any 
collision was founded. 

D. Utilization of Stream Processors (SP Optmization) 
If we send a batch of headers into APU, some will hit in 

cache and others will miss in cache. This situation will cause 
some of Stream Processors idle and waste the computing 
resource. Therefore, we split the cache and 3-Layer Hash Tree 
into two parts and process them in two different threads. In first 
part, we will only search the cache, and push the packets that 
miss in cache into a queue, once the number of packets in the 
queue is equal to or more than 512, we send the first 512 packets 
into the second part. The second part will search the microFlow 
table and 3-Layer Hash Tree as shown in Figure 3. 

E. Update data structure of Bloom filter phase 
In the Bloom filter phase of our scheme, it contains main 

bloom filter and possibility bitmaps where the possibility 
bitmap is a type of modified bloom filter. The original bloom 
filter is easy to insert, but it is impossible to delete. If we force 
to delete and set the target bits to 0, it will cause false negatives. 
To resolve the problem of deletion, we use counting bloom 
filter to replace the original bloom filter. The main idea of 
counting bloom filter is, for each bit in bloom filter, we add a 
counter for the bit, when inserting a new element, we set the 
target bit to 1 as in the original bloom filter and also increase 
the counters of these bits. When deleting an existing element, 

we decrease the counter first. Then, we check the counter. If the 
value of counter is 0, we set the bit position to 0. As a result, we 
can delete element in bloom filter without causing the false 
negative. 

In our scheme, if we use the counting bloom filter to replace 
the traditional bloom filter, we use 8-bit counters in L1, 4-bit 
counters in L2. Overall, we need 1.125 KB to store the counters 
in each L1 node, 4.25 KB to store counters in each L2 node. 
With the 12K rule set, these counters need 38.84 MB, the total 
memory consumption of our scheme is 76.84 MB. 

IV. EXPERIMENTAL RESULTS  
To share the code on different platforms, we use C++ AMP 

to program the proposed schemes.  This APU contains 4 cores 
CPU and 8 GPU Radeon cores, and the GPU contains 512 
stream processors (SP), and it can run 512 threads concurrently. 
The APU supports HSA (Heterogeneous System Architecture) 
where CPU and GPU in this APU can share the main memory 
and GPU can directly access the memory space of CPU. We use 
another platform with legacy GPU to compare with APU. 

We use FRuG [7] to generate two types of 12-dimensional 
rule sets, the microflow table that contains only the rules without 
wildcard values and the macroflow table that contains 127 types 
of rules with wildcards (*) values. The size of microflow table 
is fixed at 50K while the size of macroflow table is 12K, All the 
parameters used for this generator is set as default. Because we 
cannot get the rule sets used in the real networks, we first 
randomly generate the rule set containing rules without wildcard, 
and generate the 12K rule set contains 127 types with 100 rules 
for each type randomly.  

We evaluate the performance of our proposed scheme on the 
following two platforms. And we use 3 different trace files with 
different cache hit rate, 0%, 50% and 100%. 

In platform APU, we use AMD A10-7850 APU containing 
4-core 3.8GHz CPU, 512-SP 850MHz GPU, and 16GB DDR3-
1600 RAM. Also, OS is Ubuntu 14.04 and Compiler is HCC 0.8. 
In platform Legacy GPU, we use Intel i5-4460 containing 4-core 
3.2GHz CPU, NVIDIA GTX-750 512-SP 1125MHz GPU, and 
16GB DDR3-1600 RAM. Also, OS is Windows 7 and Compiler 
is Microsoft VC++ 2015. 

Table 1 shows the throughput of our proposed scheme for 
the 12K rule set on APU platform. Our scheme can achieve 
1,836-1,983 MPPS. On legacy GPU platform, it only can 
achieve 183 MPPS, about 1/10 of APU platform, but if we 
calculate the throughput without bus latency (memory copying 
time), the throughput is near to APU. This can prove that bus 
latency is a bottleneck of using GPU for packet classification 
processing. 

As shown in Table 2, the results are the memory 
consumption of our proposed scheme. The 3-Layer Hash Tree 
without any optimization needs 1,190 MB to store the data 
structure. The 3-Layer Hash Tree with compressing L2 tables 
needs only 70 MB. Table 3 shows the number of nodes in each 
layer.  

Cache 
Packet in 

miss 

Queue 

hit

MicroFlow table and 3-Layer Hash 

Send if more than 512 

Figure 3 Optimization Model 
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Comparing the non-optimized method and compressing L2 
tables, we can reduce 94.11% of memory consumption, and it 
will not decrease too much throughput, comparing to the non-
optimized method, it can achieve 90% throughput of non-
optimized method, only decrease 10% of throughput. 

Table 4 shows the performance in terms of cost and power 
consumption for APU and legacy GPU platforms.  The cost of 
APU platform A10-7850 is only $115 which is much lower than 
the legacy GPU platform NVIDIA Tesla K40 Graphic Card 
(~$3000) [6]. The power efficiency of our platform is also better, 
where the thermal design power (TDP) of NVIDIA Tesla K40 
Graphic Card is 235 watts and the TDP of A10-7850 is 95 watts. 
In our experiment, the power consumption of whole APU PC is 
about 130 watts when the loading is full. 

As shown in Table 5, we compare our proposed scheme with 
other packet classification schemes implemented on various 
hardwares. On FPGA platforms, the proposed scheme of [1] is 
decision-tree based method. [2] and [3] are decomposition based, 
while [2] uses the hash-based merging and [3] uses the BV-
based merging. In these 3 methods, only the [1] can use 12-
dimensional rule sets. On general purpose multi-core (CPU) 
platforms, [4] is decision-tree based and [5] is decomposition 
based while [4] cannot use OpenFlow rule sets and [5] can use 
15-dimensional rule sets. On GPU platforms, the scheme of [6] 
is decomposition based and it uses 12 binary range trees to 
process the 12-dimensional rule sets. The scheme in [20] is a 
decision-tree based method and it can support 100K 15-
dimensional ruleset. We can see that the proposed scheme 
implemented on APU outperforms all other existing schemes. 

V. CONCLUSION  
In this paper, we proposed a high throughput scheme. This 

is a decision-tree based method and use the hash-based method 
to assist the processing, it can achieve high throughput on APU 
platform. To resolve the memory consumption problem, we 
proposed a compressing method to resolve this problem. To skip 
the unnecessary searching actions, we use the Bloom filter 
method as a pre-classifier. This scheme can process the rule set 

with larger size than other method ([1] and [6]). If the bugs of 
HCC compiler can be resolved, we can utilize the larger rule sets 
and achieve higher throughput, before the bugs are resolved, our 
scheme already can achieve higher throughput than others ([1], 
[2], [3], [4], [5] and [6]). On the other hand, the hardware 
platform of our scheme has lower price and lower power 
consumption than other GPU like platform (lower than [6]).  

By utilizing the APU platform and a 12K rule set generated 
by FRuG [7], the best throughput of experimental result of our 
scheme can achieve 1836 MPPS without cache, and 1983 MPPS 
with cache. The memory consumption without any 
optimizations but with L2 table compression is only 70 MB with 
a mild throughput degradation to 1428 MPPS. The power 
consumption of whole platform is about 115 watts.  
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Table 5. Performance comparison with various types of platforms. 

Platform Method Hardware Throughput 
(MPPS) 

# of 
Rules

# of 
Fields

FPGA 

Scalable Packet Classification on FPGA [1] Virtex-5 125 1K 12 
Fast and Scalable Packet Classification using Perfect 

Hash Functions [2] Virtex-5 312 1K 5 

StrideBV: Single Chip 400G+ Packet Classification [3] Virtex-3 1250 1K 5 
General 
purpose 

multi-core 
processor 

Leveraging Parallelism for Multi-dimensional Packet 
Classification on Software Routers [4] 

Intel Xeon X5550 (4 cores 
@ 2.66GHZ) 46 30K 5 

Scalable Many-field Packet Classification on Multi-
core Processors [5] 

AMD Operation 6278 x2 
(16 cores @ 2.4GHZ) 30 32K 15 

GPU 

High-Performance Packet Classification on GPU [6] NVIDIA Tesla K40  
(2880 SPs @ 745MHz) 

44.1 
(TCAM) 4K 12 

Many-Field Packet Classification for Software-Defined 
Networking Switches [20] 

NVIDIA Tesla K20C  
(2496 SPs @ 706MHz) 170 10K 15 

3 Layer Hash Tree (Proposed scheme) NVIDIA GTX-750  
(512 SPs @ 1125MHz) 183 12K 12 

APU 3 Layer Hash Tree (Proposed scheme) AMD A10-7850  
(512 SPs @ 825MHz) 1836 12K 12 
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