
Hash-based OpenFlow Packet Classification on
Heterogeneous System Architecture

Yeim-Kuan Chang and Tung-Yin Chi
Department of Computer Science and Information Engineering

National Cheng Kung University,
Tainan City, Taiwan, R.O.C.
ykchang@mail.ncku.edu.tw

Abstract— Packet classification is a very important component for
today’s network architecture. It can help or provide packet forwarding
and other network functions. With the development of Internet and the
emergence of software-defined networking (SDN), the methods
designed for the traditional 5-dimensional rule set is not sufficient to
process the current rule set that contains rules of 12 or more
dimensions. The main problem is to process the rule sets of 12 or more
dimensions in high throughput. To achieve high throughput, we study
the implementations on GPU where some use a single hash table and
others use Binary Range Tree to process the searching. In 12-
dimensional rule sets defined by OpenFlow 1.0, 8 fields are in the
format of exact value or wildcard, and so using the single hash table or
binary range tree is not efficient. Another problem to implement packet
classification on GPU is that we must transfer the input data and results
via the PCI-E bus that will incur long bus latency. In this paper, we
propose a modified hash table to process the fields that contain only
exact value or wildcard, and use the compressing method to reduce
memory consumption. On the other hand, we implement the proposed
method on APU that uses Heterogeneous System Architecture to skip
the bus latency. According to the experimental results on AMD A10-
7850 APU, our method can achieve the throughput of 1814 MPPS, and
can support the rule sets of more than 12K 12-dimensional rules. The
achieved throughput is 10 times of the methods on legacy GPU.

Keyword: Packet Classification; OpenFlow; APU; GPU; Hash Table

I. INTRODUCTION
The responsible device for forwarding packets over

networks is called router and switch. These devices will fetch
the header information of the packets, and analyze the
information to determine where or which port to send out these
packets. These actions will be repeated until the packet have
reached its destination node. Today’s routers and switches
support not only forwarding packets, but also Quality of Service
(QoS), firewall, traffic control, or virtual private network (VPN)
and more applications.

Packet classification is a method to determine what actions
to be applied on the input packets where actions are predefined
in the rule sets. The input packet may match one or more rules.
We select the rule with highest priority to apply its actions on
the input packets.

Several differences between traditional 5-dimensional
packet classification and OpenFlow packet classification are
mainly in the number of fields in a rule and the type of fields.
Eight of the 12 fields in OpenFlow 1.0 are exact values or
wildcard and so using the traditional packet classification
methods to process these fields is not efficient.

We proposed a scheme to speed up the fields processing of
exact values. The scheme can be used as an accelerator for
traditional packet classification method. By combining this
scheme and traditional packet classification method, the
switches can achieve very high speed for both traditional and
OpenFlow rules.

The rest of this paper is organized as follows. In section II,
we introduce work related to packet classification. Section III
introduces the proposed scheme that is 3-Layer Hash Tree, this
is a Decision-tree based algorithm, and add hashing method to
process the fields with exact values. The experimental
simulation and comparisons with many existing state-of-art
implementatons are shown in section IV. Section V concludes
the paper.

II. RELATED WORK

A. OpenFlow Rule Table
OpenFlow switches contain a set of flow tables, and each

flow table contains a set of rules. The rule sets are used to
classify the packets. A rule is said to be a match if all the fields
of the rule match the header values of the incoming packet.

In OpenFlow version 1.0, the flow table contains 12 fields
including 5 traditional packet classification fields that are
source/destination IP addresses (32), source/destination
transport ports (16), and IP protocol (8) and 7 additional fields
that are ingress port (6), MAC source/destination addresses (48),
Ethernet type (16), VLAN ID (12), VLAN priority (3), and IP
ToS (6), where the numbers in parentheses are the bit counts.
Totally, each entry needs 243 bits. The source/destination IP
address fields are of type prefix, the source/destination transport
port fields are of type range, and other 8 fields are of type
singleton. The current version of OpenFlow is 1.5.1 [23].
However, version 1.6 has been available since September 2016,
but accessible only to ONF's members. The proposed hash based
scheme used OpenFlow 1.0 as a test example and can be easily
extended to later versions.

B. Bloom Filter
Bloom Filter first described by Bloom in 1970 is a high

space-efficient data structure. It can be used to check if an
element is in a set or not. It has high space efficiency and
constant lookup time, both are much better than normal
algorithm. It may has false positive matches, but does not have

300978-1-7281-1340-1/19/$31.00 ©2019 IEEE ICUFN 2019

false negatives. Another disadvantage of Bloom filter is that it
is difficult to delete an element.

 If we want to check an element is in a set or not, the
simplest method is storing all the elements in the set, and
compare all elements to check. We can use Tree, Linked-list or
hash table to implement this method. When the number of
elements increases, the memory consumption also increases,
and so the speed of searching will slow down.

The basic idea of Bloom Filter is, when an element is added
in to a set, we use N hash functions to generate N locations in a
bitmap, and then set all of them to one. When searching the
element, we just need to check whether all the corresponding
locations are one or not. If they are all ones, it is likely that the
element exists in the set. Otherwise, if one or more of the
locations are zeros, it is impossible that the element exist in the
set. Therefore, we can use Bloom filter as a pre-classifier.

C. Accelerated Processing Unit (APU)
In the legacy x86 PC architecture, Central Processing Unit

(CPU) and Graphics Processing Unit (GPU) are independent,
the communication between them goes through PCI Express bus.
Advanced Micro Devices (AMD) published a new type
processor named Accelerated Processing Unit (APU) that
combines CPU and GPU into a single chip and share the main
memory.

In the legacy architecture, when we use GPU to perform the
computing, we need to copy the input data from the main
memory to the GPU memory, and copy the results back from
GPU memory to main memory. By the experimental results, we
can see that the action of copying the data back and forth
between main memory and GPU memory is the main bottleneck
for the packet classification problem.

D. Heterogeneous System Architecture (HSA)
Heterogeneous System Architecture (HSA) is an

architecture defined and developed by HSA foundation, formed
by vendors like AMD, ARM, Qualcomm, Samsung, and MTK.
HSA is an architecture in which CPU and GPU share the bus,
memory and process. The original target is to resolve the
problem of the communication latency between GPU, CPU and
other processors. It can also provide better compatibility
between different hardware platform (better than CUDA and
OpenCL). Heterogeneous computing has been widely used in
system-on-chip devices, such as video game consoles. For
example, Sony PlayStation 4 uses the customized AMD APU,
the CPU and GPU on the APU share the 8GB GDDR5 memory.

This architecture is first used in the Cell Broadband Engine
Architecture. Heterogeneous System Architecture standard
contains not only the CPUs and GPUs, it can also uses digital
signal processors (DSPs), application-specific integrated circuits
(ASICs) or Field-programmable gate array (FPGA) to build the
system. This architecture allows any type of accelerator to
operate at the same level as the CPU.

To achieve the feature that all processors can share the
memory space, HSA standard defines a unified virtual address
space (VAS) for the processors. On the APU without HSA, the
GPU has its own memory space separated from main memory,

if we want to support HSA, we need to share the page tables
between GPU and CPU, then the GPU and CPU can transfer data
by sharing pointers. For AMD APU, this feature is achieved by
I/O memory management units (IOMMU).

As of June 2016, on x86 PC platform, only AMD’s “Kaveri”
APU's and Carrizo APU's can support HAS and on other
platform, the customized APU of Sony’s PlayStation 4 and
ARM's “Bifrost” Mali GPU can support HSA. Except supported
by hardware, the HSA needs to be supported by the operating
system and device driver. For example, if we use the AMP
“Kaveri” APU, it supports HSA, but we also need to install
kernel module, driver, and runtime software to run the HSA
program.

III. PROPOSED SCHEME
The proposed scheme is called 3-Layer Hash Tree that is a

Decision-tree based data structure extended by adding hashing
to process the fields with exact values. Because these fields
contains only exact value or wildcard, we can simply group the
rules with same type into a group, and each group has its own
hash table. To determine how many hash tables to store the
information of rules, we must calculate the type number first.
Because the rules contains only exact value or wildcard, it
means we need 2n hash tables if the layer contains n fields. For
example, in our proposed scheme, Layer 1 contains two fields
(destination MAC address and source MAC address), so we
need 22= 4 hash tables to store the rule information. Layer 3
contains 3 fields, ingress port, Ethernet type and VLAN ID and
so we need 23=8 hash tables to store rule information.

To speed up the searching in 3-Layer Hash Tree, we use a
Bloom filter phase to detect the tables which contains no target
information, and so we can skip the searching operations for
these tables to speed up the classification.

The L1 node consists of a Bloom filter phase and 4 hash
tables. This Bloom filter phase is used as a pre-classifier for L1
hash tables. The hash tables use source MAC and destination
MAC to build the hash tables. Similarly, the L2 node consists
of a Bloom filter phase and 8 hash tables, where ingress port,
Ethernet type and VLAN ID fields are used to build the hash
tables. This Bloom filter phase is used as a pre-classifier for L2
hash tables. In the L3 node, there is a hash table with perfect
hashing function. The hash tables use 2 fields to hash, VLAN
priority and IP ToS.

We also use Cache table to speed up the process for the
packets that have been received before. Searching the cache that
only needs one memory access is much faster than searching
the 3-Layer Hash Tree.

In the OpenFlow rule table, there are two types of rules,
microflow and macroflow. Microflow is the rules that have
exact values in all 12 fields. However, macroflow rules may
contain non-exact values in some fields. Using a single hash
table to process microflow rules is more efficient than using the

301

3-Layer Hash Tree, so we split the rules into two parts, one
contains microflow rules and another one contains macroflow
rules. We use a single table to process the microflow table and
use the 3-Layer Hash Tree to process the macroflow table.

A. Bloom Filter and Possibility Bitmap
The Bloom filter phase as shown in Figure 2 contains a main

bloom filter, two 4-bit possibility bitmaps and a 4-bit ignoring
flag. We use 2 hash functions based on field 11 (3-bit VLAN
priority) and field 12 (6-bit IP ToS) as input data.

When both the bit positions in main bloom filter computed
by these 2 hash functions are 1, there must exist at least one rule
that will match the corresponding header values of the incoming
packet. Then, we retrieve two 4-bit possibility bitmaps.

Assume the bit positions computed by two hash functions
are 0 and 1023, respectively and both bit positions are 1. Then
we will get two 4-bit bitmaps, 1111 and 0001 that will be
ANDed to obtain the final result, 0001. The reason that the
bitmap is 4 bits comes from the rule grouping scheme based on
source and destination MAC addresses of the rules as follows.
The rules with source and destination MAC addresses being
both equal to wildcard and wildcard, wildcard and exact value,
exact value and wildcard, and exact value and exact value are
put in group 0, 1, 2, 3, respectively. As a result, if the final 4-bit
bitmap is 0001, only the group 3 needs to be search. The rules
in groups 1, 2, or 3 are further divided into 216 subgroups based
on source and destination MAC addresses by using an array of
216 pointers pointing to the next layer structure (L2 node) of
these subgroups.

The function of these three hash tables is 16-bit XOR
folding that divides the 48-bit MAC address into three 16-bit
sub-addresses and performs XOR operation. For example, if we
get a hashing result 32,768, then we know that we have to store
the rule in the L2 node pointed to by the 32768th pointer of the
hash table.

The 4-bit ignoring flag records which tables contain the
rules with wildcards both in field 11 and 12 because the main
Bloom filter is useless for this kind of rules. If the ith bit of the
4-bit ignoring flag is set to 1, it means the ith table contains the
rule that field 11 and 12 are both wildcard, and we must search
this table by ignoring the bitmap computed by the main Bloom
filter and possibility bitmaps.

The bloom filter and hash tables in Layer 2 are also based
on VLAN priority and IP ToS, which is similar to Layer 1. But
the possibility bitmap and ignoring flag are 8 bits because fields
6-bit ingress port, 16-bit Ethernet type and 12-bit VLAN ID are
used for creating eight hash tables.

We use 3 bits to represent which field value of a rule is
wildcard by mapping bit 2 to ingress port field, bit 1 to Ethernet
type field, and bit 0 to VLAN ID field. For example, if a rule
has exact values in the fields of ingress port and Ethernet type
and wildcards in VLAN ID field, it belongs to group 6 (110).

The size of hash table is 4096, and each entry is a pointer
that points to an L3 node. The hash function uses a 12-bit XOR
folding hashing function based on ingress port, Ethernet type,
and VLAN priority.

In L3 node, we have a hash table with perfect hashing table
(direct expansion) of size 512. Each entry stores a pointer to a
bucket of rules. If there are wildcards in field 11 or field 12, we
must duplicate the rule into multiple buckets.

B. Compress L2 hash table
Because the L2 tables waste too many entries to store null

pointers, it uses about 1GB memory, about 97% of total
memory consumption of the 3-Layer Hash Tree, so we propose
a method to compress L2 tables.

The basic idea is to store only the pointers that point to exist
L3 nodes, and remove the null pointers. We use an array of size
k pointers where k is the number of non-NULL pointers in the
original hash table. We also need a 4096-bit bitmap to record
the positions of original hash table corresponding to those non-
NULL pointers.

C. Cache and MicroFlow table
According to the experimental results of [17], 35 percent of

flows contains 95 percent of packets. In other words, we can
store the 35% flows in one single hash table, and this hash table
can process 95% of input packets without searching the 3-Layer

Figure 2. Bloom filter phase.

Hit in bloom filter

Merge with ignoring flag

Main Bloom Filter

Packet in
miss

Possibility Bitmap

Ignoring Flag

Get possibility bitmap (4bits)

Continue to hash table phase
Get bitmap result

Figure 1. The 3-Layer Hash Tree.

L3 Node

Cache table

Microflow table

L2 Node

L3 Node L3 Node

L1 Node

Hash Table phase

Bloom filter phase

L2 Node

Hash Table phase

Bloom filter phase

L2 Node

L3 Node

302

Hash Tree. This hash table is called “Cache” and it can reduce
a lot of packet classification time. In our scheme, the size of
cache hash table is 1024, and use first in first out (FIFO) as
cache replacement algorithm. We use this cache to classify the
packets, if the packets are hit in the cache, we directly return the
result. If the packets are miss in the cache, we push these into a
queue of the 3-Layer Hash Tree, once the number of packets in
the queue is equal or more than 512, we send first 512 packets
of the queue into the GPU to search for result. The batch size is
set to 512 because the limit of parallel threads on the APU is
512.

MicroFlow is a type of flow rules that have all fields with
exact value. So, we can use a simple hash table to store and
classify this type of rules, and this method also only needs one
memory access to search the target entry. In our scheme, the
maximum size of microFlow table is 65,536.

On the other hand, because of the high collision rate of
traditional hashing method, we use the Cuckoo Hashing to
replace traditional hashing method. With the Cuckoo Hashing,
we can reduce the collision rate to less than 0.01%. In our
experiment, we use a microflow table of 50K rules, and no any
collision was founded.

D. Utilization of Stream Processors (SP Optmization)
If we send a batch of headers into APU, some will hit in

cache and others will miss in cache. This situation will cause
some of Stream Processors idle and waste the computing
resource. Therefore, we split the cache and 3-Layer Hash Tree
into two parts and process them in two different threads. In first
part, we will only search the cache, and push the packets that
miss in cache into a queue, once the number of packets in the
queue is equal to or more than 512, we send the first 512 packets
into the second part. The second part will search the microFlow
table and 3-Layer Hash Tree as shown in Figure 3.

E. Update data structure of Bloom filter phase
In the Bloom filter phase of our scheme, it contains main

bloom filter and possibility bitmaps where the possibility
bitmap is a type of modified bloom filter. The original bloom
filter is easy to insert, but it is impossible to delete. If we force
to delete and set the target bits to 0, it will cause false negatives.
To resolve the problem of deletion, we use counting bloom
filter to replace the original bloom filter. The main idea of
counting bloom filter is, for each bit in bloom filter, we add a
counter for the bit, when inserting a new element, we set the
target bit to 1 as in the original bloom filter and also increase
the counters of these bits. When deleting an existing element,

we decrease the counter first. Then, we check the counter. If the
value of counter is 0, we set the bit position to 0. As a result, we
can delete element in bloom filter without causing the false
negative.

In our scheme, if we use the counting bloom filter to replace
the traditional bloom filter, we use 8-bit counters in L1, 4-bit
counters in L2. Overall, we need 1.125 KB to store the counters
in each L1 node, 4.25 KB to store counters in each L2 node.
With the 12K rule set, these counters need 38.84 MB, the total
memory consumption of our scheme is 76.84 MB.

IV. EXPERIMENTAL RESULTS
To share the code on different platforms, we use C++ AMP

to program the proposed schemes. This APU contains 4 cores
CPU and 8 GPU Radeon cores, and the GPU contains 512
stream processors (SP), and it can run 512 threads concurrently.
The APU supports HSA (Heterogeneous System Architecture)
where CPU and GPU in this APU can share the main memory
and GPU can directly access the memory space of CPU. We use
another platform with legacy GPU to compare with APU.

We use FRuG [7] to generate two types of 12-dimensional
rule sets, the microflow table that contains only the rules without
wildcard values and the macroflow table that contains 127 types
of rules with wildcards (*) values. The size of microflow table
is fixed at 50K while the size of macroflow table is 12K, All the
parameters used for this generator is set as default. Because we
cannot get the rule sets used in the real networks, we first
randomly generate the rule set containing rules without wildcard,
and generate the 12K rule set contains 127 types with 100 rules
for each type randomly.

We evaluate the performance of our proposed scheme on the
following two platforms. And we use 3 different trace files with
different cache hit rate, 0%, 50% and 100%.

In platform APU, we use AMD A10-7850 APU containing
4-core 3.8GHz CPU, 512-SP 850MHz GPU, and 16GB DDR3-
1600 RAM. Also, OS is Ubuntu 14.04 and Compiler is HCC 0.8.
In platform Legacy GPU, we use Intel i5-4460 containing 4-core
3.2GHz CPU, NVIDIA GTX-750 512-SP 1125MHz GPU, and
16GB DDR3-1600 RAM. Also, OS is Windows 7 and Compiler
is Microsoft VC++ 2015.

Table 1 shows the throughput of our proposed scheme for
the 12K rule set on APU platform. Our scheme can achieve
1,836-1,983 MPPS. On legacy GPU platform, it only can
achieve 183 MPPS, about 1/10 of APU platform, but if we
calculate the throughput without bus latency (memory copying
time), the throughput is near to APU. This can prove that bus
latency is a bottleneck of using GPU for packet classification
processing.

As shown in Table 2, the results are the memory
consumption of our proposed scheme. The 3-Layer Hash Tree
without any optimization needs 1,190 MB to store the data
structure. The 3-Layer Hash Tree with compressing L2 tables
needs only 70 MB. Table 3 shows the number of nodes in each
layer.

Cache
Packet in

miss

Queue

hit

MicroFlow table and 3-Layer Hash

Send if more than 512

Figure 3 Optimization Model

303

Comparing the non-optimized method and compressing L2
tables, we can reduce 94.11% of memory consumption, and it
will not decrease too much throughput, comparing to the non-
optimized method, it can achieve 90% throughput of non-
optimized method, only decrease 10% of throughput.

Table 4 shows the performance in terms of cost and power
consumption for APU and legacy GPU platforms. The cost of
APU platform A10-7850 is only $115 which is much lower than
the legacy GPU platform NVIDIA Tesla K40 Graphic Card
(~$3000) [6]. The power efficiency of our platform is also better,
where the thermal design power (TDP) of NVIDIA Tesla K40
Graphic Card is 235 watts and the TDP of A10-7850 is 95 watts.
In our experiment, the power consumption of whole APU PC is
about 130 watts when the loading is full.

As shown in Table 5, we compare our proposed scheme with
other packet classification schemes implemented on various
hardwares. On FPGA platforms, the proposed scheme of [1] is
decision-tree based method. [2] and [3] are decomposition based,
while [2] uses the hash-based merging and [3] uses the BV-
based merging. In these 3 methods, only the [1] can use 12-
dimensional rule sets. On general purpose multi-core (CPU)
platforms, [4] is decision-tree based and [5] is decomposition
based while [4] cannot use OpenFlow rule sets and [5] can use
15-dimensional rule sets. On GPU platforms, the scheme of [6]
is decomposition based and it uses 12 binary range trees to
process the 12-dimensional rule sets. The scheme in [20] is a
decision-tree based method and it can support 100K 15-
dimensional ruleset. We can see that the proposed scheme
implemented on APU outperforms all other existing schemes.

V. CONCLUSION
In this paper, we proposed a high throughput scheme. This

is a decision-tree based method and use the hash-based method
to assist the processing, it can achieve high throughput on APU
platform. To resolve the memory consumption problem, we
proposed a compressing method to resolve this problem. To skip
the unnecessary searching actions, we use the Bloom filter
method as a pre-classifier. This scheme can process the rule set

with larger size than other method ([1] and [6]). If the bugs of
HCC compiler can be resolved, we can utilize the larger rule sets
and achieve higher throughput, before the bugs are resolved, our
scheme already can achieve higher throughput than others ([1],
[2], [3], [4], [5] and [6]). On the other hand, the hardware
platform of our scheme has lower price and lower power
consumption than other GPU like platform (lower than [6]).

By utilizing the APU platform and a 12K rule set generated
by FRuG [7], the best throughput of experimental result of our
scheme can achieve 1836 MPPS without cache, and 1983 MPPS
with cache. The memory consumption without any
optimizations but with L2 table compression is only 70 MB with
a mild throughput degradation to 1428 MPPS. The power
consumption of whole platform is about 115 watts.

REFERENCES
[1] W. Jiang and V. K. Prasanna, “Scalable Packet Classification on FPGA,”

IEEE Trans. VLSI Syst., vol. 20, no. 9, pp. 1668–1680, 2012.
[2] V. Pus, J. Korenek, and J. Korenek, “Fast and Scalable Packet

Classification using Perfect Hash Functions,” in Proceedings of the
ACM/SIGDA international symposium on Field Programmable Gate
Arrays (FPGA), 2009, pp. 229–236.

[3] T. Ganegedara and V. K. Prasanna, “StrideBV: Single Chip 400G+ Packet
Classification,” in 13th IEEE International Conference on High
Performance Switching and Routing (HPSR), 2012, pp. 1–6.

[4] Y. Ma, S. Banerjee, S. Lu, and C. Estan, “Leveraging Parallelism for Multi-
dimensional Packet Classification on Software Routers,” SIGMETRICS
Perform. Eval. Rev., vol. 38, no. 1, 2010, pp. 227–238.

[5] Yun Qu, Shijie Zhou, Viktor K. Prasanna, “Scalable Many-Field Packet
Classification on Multi-core Processors,” in 25th International Symposium
on Computer Architecture and High Performance Computing, 2013, pp.
33-40.

Table 2 Memory and throughput without optimizationd for
12K rules.

Method Optimization Memory
(MB)

Throughput
(MPPS)

3 Layer Hash Tree None 1,190 1,586
3 Layer Hash Tree Compress L2 table 70 1,428

Table 3 Number of nodes in each layer for 12K rules.
 Layer 1 Layer 2 Layer 3

Layer 1 1 959 1,171

Table 4. Cost and power on different platforms.

Type Name Peak Gflops Stream Processors
GPU NVIDIA Tesla K40 4,290 2,880
GPU NVIDIA Tesla K20 3,520 2,496

APU AMD A10-7850 737 (GPU)
118 (CPU) 512

Type Name Clock
rate (MHz)

Thermal design
Power (Watts)

Price
(USD)

GPU NVIDIA Tesla K40 745 235 3000
GPU NVIDIA Tesla K20 706 225 2395
APU AMD A10-7850 825 95 115

Table 1. Throughputs with different optimizations for 12K
rules.

Platform Optimization Cache hit
rate of trace

Throughput
(MPPS)

APU None 0% 1,586
APU BF and cache 0% 1,836
APU BF and cache 50% 1,854
APU BF and cache 100% 1,983
APU BF, cache, SP Opt 0% 1,836
APU BF, cache, SP Opt 50% 1,899
APU BF, cache, SP Opt 100% 1,983

Legacy GPU None 0% 183
Legacy GPU
(no memory

copying time)
None 0% 1,433

304

[6] Shijie Zhou, Shreyas G. Singapura, Viktor K. Prasanna, “High-
performance packet classification on GPU,” High Performance Extreme
Computing Conference (HPEC), 2014, pp. 1-6.

[7] T. Ganegedara, W. Jiang, and V. Prasanna, "Frug: A benchmark for packet
forwarding in future networks," in Proc. IPCCC '10, 2010.

[8] OpenFlow Foundation, “OpenFlow Switch Specification Version
1.0.0.”Available: http://www.openflowswitch.org/documents/openflow-
spec-v1.0.0.pdf

[9] HSA foundation, “DRAFT HSA Platform System Architecture
Specification 1.1” Available:
http://www.hsafoundation.com/?ddownload=5114

[10] Yun R. Qu, Hao H. Zhang, Shijie Zhou, Viktor K. Prasanna, “Optimizing
many-field packet classification on FPGA, multi-core general purpose
processor, and GPU,” Architectures for Networking and Communications
Systems (ANCS), 2015, pp.87-98.

[11] Nobutaka Matsumoto, Michiaki Hayashi, “LightFlow: Speeding up GPU-
based flow switching and facilitating maintenance of flow table,” IEEE
13th International Conference on High Performance Switching and
Routing, 2012, pp.76-81.

[12] Andrei Broder, Michael Mitzenmacher, Andrei Broder I Michael
Mitzenmacher, “Network Applications of Bloom Filters: A Survey,”
Internet Mathematics, 2004, pp.485-509.

[13] Bin Fan, David G. Andersen, Michael Kaminsky, Michael D.
Mitzenmacher, “Cuckoo Filter: Practically Better Than Bloom,” 10th
ACM International on Conference on emerging Networking Experiments
and Technologies, 2014, pp.75-88.

[14] Wikipedia, “Heterogeneous System Architecture, ” Available:
https://en.wikipedia.org/wiki/Heterogeneous_System_Architecture

[15] Weirong Jiang, Viktor K. Prasanna, Norio Yamagaki, “Decision Forest: A
Scalable Architecture for Flexible Flow Matching on FPGA,” International

Conference on Field Programmable Logic and Applications, 2010, pp.394-
399.

[16] Yanbiao Li, Dafang Zhang, Alex X. Liu, Jintao Zheng, “GAMT: a fast and
scalable IP lookup engine for GPU-based software routers,” Proceedings
of the ninth ACM/IEEE symposium on Architectures for networking and
communications systems, 2013, pp.1-12.

[17] Luke McHale, Jasson Casey, Paul V. Gratz, Alex Sprintson, “Stochastic
Pre-Classification for SDN Data Plane Matching,” IEEE 22nd
International Conference on Network Protocols, 2014, pp.596-602.

[18] Nen-Fu Huang, Shi-Ming Zhao, Jen-Yi Pan, Chi-An Su, “A Fast IP
Routing Lookup Scheme for Gigabit Switching Routers,” INFOCOM '99.
Eighteenth Annual Joint Conference of the IEEE Computer and
Communications Societies. Proceedings. IEEE (Volume:3), 1999,
pp.1429 - 1436 vol.3

[19] Kate Gregory, Ade Miller, “C++ AMP: Accelerated Massive Parallelism
with Microsoft Visual C++” 2012.

[20] Cheng-Liang Hsieh, Ning Weng, “Many-Field Packet Classification for
Software-Defined Networking Switches”, ANCS '16 Proceedings of the
2016 Symposium on Architectures for Networking and Communications
Systems, 2016, pp.13-24

[21] Voravit Tanyingyong, Markus Hidell, Peter Sjödin, “Using hardware
classification to improve PC-based OpenFlow switching”, IEEE 12th
International Conference on High Performance Switching and Routing,
2011, pp.215-22

[22] Matteo Varvelloy, Rafael Laufer, Feixiong Zhang, T.V. Lakshman,
“Multi-Layer Packet Classification with Graphics Processing Units”,
Proceedings of the 10th ACM International on Conference on emerging
Networking Experiments and Technologies, 2014, pp.109-1.

[23] OpenFlow Foundation, "Open Networking Foundation - OpenFlow
v1.5.1" (PDF), https://3vf60mmveq1g8vzn48q2o71a-wpengine.netdna-
ssl.com/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf

Table 5. Performance comparison with various types of platforms.

Platform Method Hardware Throughput
(MPPS)

of
Rules

of
Fields

FPGA

Scalable Packet Classification on FPGA [1] Virtex-5 125 1K 12
Fast and Scalable Packet Classification using Perfect

Hash Functions [2] Virtex-5 312 1K 5

StrideBV: Single Chip 400G+ Packet Classification [3] Virtex-3 1250 1K 5
General
purpose

multi-core
processor

Leveraging Parallelism for Multi-dimensional Packet
Classification on Software Routers [4]

Intel Xeon X5550 (4 cores
@ 2.66GHZ) 46 30K 5

Scalable Many-field Packet Classification on Multi-
core Processors [5]

AMD Operation 6278 x2
(16 cores @ 2.4GHZ) 30 32K 15

GPU

High-Performance Packet Classification on GPU [6] NVIDIA Tesla K40
(2880 SPs @ 745MHz)

44.1
(TCAM) 4K 12

Many-Field Packet Classification for Software-Defined
Networking Switches [20]

NVIDIA Tesla K20C
(2496 SPs @ 706MHz) 170 10K 15

3 Layer Hash Tree (Proposed scheme) NVIDIA GTX-750
(512 SPs @ 1125MHz) 183 12K 12

APU 3 Layer Hash Tree (Proposed scheme) AMD A10-7850
(512 SPs @ 825MHz) 1836 12K 12

305

